Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019

Computer Techniques in Power System Analysis

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. With neat sketches, explain the following:
 - i) Oriented graph
 - ii) Basic cut sets

iii) Tree branch path incidence matrix.

(06 Marks)

b. The bus incidence matrix of 8 elements and 5 nodes is given below. Reconstruct the graph of the network.

b	1	2	3	4	5	6	7	8
n	A.							7
A	-1	0	0	0	1	0	1	0
В	0	-1	0	0	-1	1	0	1
C	0	0	-1	1	0	-1	0	0
D	0	0	0	-1	0	0	-1	-1

(06 Marks)

c. For the network shown in Fig.Q1(c), obtain the matrices A, B and C. Assume G as reference bus and AB, DF as links.

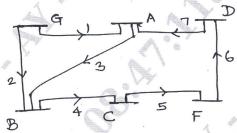
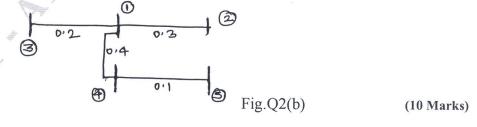


Fig.Q1(c)


(08 Marks)

2 a. For the data given below, obtain the YBUS using singular transformation. Take bus 4 as reference bus.

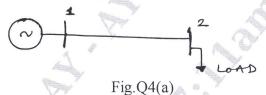
Line	Bus $(p - q)$	Z_{pu}	Bus $(r - s)$	Z_{pu}
1	1-2	0.2	59	7
2	2-3	0.3	1-2	0.05
3	3-4	0.4		
4	4-1	0.5		ÿ.

(10 Marks)

b. Form the Z_{BUS} for the power system shown in Fig.Q2(b). Select node 1 as reference bus. The line reactances are marked in p.u.

- What is the importance of load flow in power system? Enumerate the data required to carry load flow analysis. (08 Marks)
 - b. Following is a system flow data of load flow solution:

Bus code	Admittance
1-2	2 - jB
1-3	1 - j4
2-3	0.666 - j2.664
2-4	1 - j4
3-4	2 - jB


The schedule of active and reactive power are as follows:

Bus code	P	Q	V	Remarks
1	-	-	1.06	Slack
2	0.5	0	1.04+j0	PV
3	0.4	0.3	-	PQ
4	0.3	0.1	-	PQ

The reactive power constraint at bus 2 is $0.1 \le Q_2 \le 1.0$ pu. Determine the voltage at the end of first iteration using Gauss-Seidel iterative method. Assume acceleration factor $\alpha = 1.4$.

(12 Marks)

- Explain the fast decoupled load model with stating all the assumptions made.
 - In the system shown in Fig.Q4(a), bus 1 is slack bus with a voltage of $V = 1.0 \mid 0^{\circ}$ pu and at load bus P = 125 MW, Q = 60 MVAv. The line impedance are (0.15 + j0.19) pu on the base of 100 MVA, using Newton-Raphson method obtain |V| and δ upto first iteration.

(12 Marks)

PART - B

- What is the need of economic operation of power systems? Explain four types of 5 performance curves used for economic generation scheduling. (10 Marks)
 - b. The fuel cost functions for the three plants in Rs./hr are given by

$$F_1 = 0.004 PG_1^2 + 5.3 PG_1 + 500$$

$$F_2 = 0.006 \text{ PG}_2^2 + 5.5 \text{ PG}_2 + 400$$

$$F_3 = 0.009 PG_3^2 + 5.8 PG_3 + 200$$

where PG₁, PG₂, PG₃ are in MW. Find the optimal dispatch and total cost, when the total load is 975 MW, with the following generator limits

 $100 \text{ MW} \le PG_1 \le 450 \text{ MW}$; $100 \text{ MW} \le PG_2 \le 350 \text{ MW}$; $100 \text{ MW} \le PG_3 \le 225 \text{ MW}$.

(10 Marks)

- What are B-coefficients? Obtain the expressions for the transmission loss coefficients for a 6 3 bus system.
 - b. A power system having two plants 1 and 2 corrected to the busses 1 and 2 respectively as shown below. There are two loads and four branches. The ref bus with a voltage of $1.0\,|\,0^{\circ}$ pu is shown in the diagram. The branch currents and impedances are:

$$I_a = (2 - j0.5) \text{ pu}$$

$$I_b = (1.6 - j0.4) \text{ pu}$$

$$I_c = (1 - j0.25) \text{ pu}$$

$$I_d = (3.6 - j0.9) \text{ pu}$$

$$Z_a = (0.015 + j0.06) \text{ pu} = Z_b$$

$$Z_c = (0.01 + j0.04) \text{ pu} = Z_d$$

Calculate the loss coefficients of the system in pu, if the base MVA is 100 MVA. (10 Marks)

- 7 a. With the help of a flow chart, explain the method of finding the transient stability of a given power system using Runge Kutta method. (10 Marks)
 - b. Consider a system having the following parameters. $p_m = 3.0$ pu, $\gamma_1 p_m = 1.2$ pu, $\gamma_2 p_m = 2.0$ pu, H = 3.0, f = 60 Hz, $\Delta t = 0.02$ sec, $p_e = 1.5$ pu. Determine the rotor angle and angular frequency at the end of 0.02 second using modified Euler's methods. (10 Marks)
- 8 a. Explain the following:
 - i) Network performance equations
 - ii) Load models employed for stability studies

(10 Marks)

b. Explain various methods employed for improving the transient stability.

(10 Marks)

* * * * *