2. Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Field Theory**

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. State and explain Coulomb's law. Four concentrated charges are located at the vertices of a plane rectangle as shown in Fig.Q1(a). Find the magnitude and direction of resultant force on Q1.

(10 Marks)

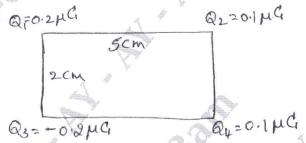


Fig.Q1(a)

- b. State and explain Gauss law. Derive an equation to covert the surface integral of the normal component over a closed surface into its volume integral of any other differential form [Divergence form]. (10 Marks)
- 2 a. Derive an equation for potential at any point along the axis of uniformly charged line.

(08 Marks)

b. Derive an equation for the capacitance of an co-axial cable.

(04 Marks)

c. Find the work done in moving a $5\mu C$ charge from the origin to P(2, -1, 4) through the field

$$\overrightarrow{E} = 2xyz \ a_x + x^2z \overrightarrow{a}_y + x^2y \overrightarrow{a}_z$$
 V/m via the path.

- i) straight line segments (0, 0, 0) to (2, 0, 0) to (2, -1, 0) to (2, -1, 4)
- ii) straight line x = -2y; z = 2x

iii) curve
$$x = -2y^3$$
, $z = 4y^2$.

(08 Marks)

3 a. State prove the uniqueness theorem.

(10 Marks)

b. Prove that, at the boundary of two perfect dielectric materials \in_1 and \in_2 D_1 is incident at an angle θ_1 with respect to normal to the boundary surface as:

$$D_2 = D_1 \sqrt{\cos^2 \theta_1 + (\epsilon_2 / \epsilon_1)^2 \sin^2 \theta_1} . \tag{05 Marks}$$

C. Derive the junction potential of a P-N junction from the Poisson's equation. (05 Marks)

- 4 a. Derive an expression for \overrightarrow{H} at any point in cylindrical system due to filamentary conductor carrying a current I on the z axis from $-\infty < z < \infty$. (04 Marks)
 - b. Find the incremental field $\overrightarrow{\Delta} H_2$ at P_2 caused by a source at P_1 at $I_1 \xrightarrow{\Delta} L_1 =$
 - i) $2\pi \vec{a}_2 \mu Am$, given $P_1(4,0,0)$ and $P_2(0,3,0)$
 - ii) $2\pi \vec{a}_2 \mu Am$, given $P_1(4,-2,3)$ and $P_2(0,3,0)$
 - iii) $2\pi(0.6\vec{a}_x 0.8\vec{a}_y)$ µAm, given $P_1(4,-2,3)$ and $P_2(1,3,2)$. (06 Marks)
 - c. Given $\overrightarrow{H} = y^2 z \overrightarrow{a}_x + 2(x+1)yz \overrightarrow{a}_y (x+1)z^2 \overrightarrow{a}_z$
 - i) Find $\phi \overrightarrow{H} d\overrightarrow{L}$ around the square path going from P(0, 2, 0) to A(0, 2 + b₁ 0) to B(0, 2 + b, b) to C(0, 2, b) to P
 - ii) Evaluate $\phi \overrightarrow{H} \overrightarrow{dL}$ for b = 0.1
 - iii) Find $\overrightarrow{\nabla} \times \overrightarrow{H}$
 - iv) Evaluate $\left(\overrightarrow{\nabla} \times \overrightarrow{H}\right)_{x}$ at P
 - v) Show that $\left(\overrightarrow{\nabla} \times \overrightarrow{H}\right)_{x} = \frac{\overrightarrow{\phi} \overrightarrow{H} \overrightarrow{dL}}{\Delta S}$.

(10 Marks)

PART - B

- 5 a. Derive the boundary conditions for normal and tangential components of 2 isotropic homogeneous linear materials with permeability μ_1 and μ_2 in a magnetic field. (10 Marks)
 - b. If $\overrightarrow{B} = 0.05x \overrightarrow{a}_y T$ in a material for which $\chi_m = 2.5$, find : i) μ_R ii) μ_R iii) \overrightarrow{H} iv) \overrightarrow{M} v) \overrightarrow{J} . (10 Marks)
- 6 a. From Ampere's circuit law, derive an expression for Maxwell's second equation in integral form.

 (08 Marks)
 - b. List all the Maxwell's relations for time varying and static conditions both in point and integral form. (04 Marks)
 - c. Derive the relation for ratio of magnitude of conduction current density to the displacement current density.

 (04 Marks)
 - d. A perfectly conducting filament containing a small 500 Ω resistor is formed into a square, find I(t) if $\overrightarrow{B} = 0.2\cos 120\pi t \overrightarrow{a}_2 T$. (04 Marks)

7 a. State and prove Poynting theorem.

(10 Marks)

b. Discuss briefly skin depth and skin effect.

(04 Marks)

c. A wave propagating in a lossless dielectric has the components:

$$\overrightarrow{E} = 500\cos[10^7 t - \beta z] \overrightarrow{a}_x \text{ V/m}$$

$$\overrightarrow{H} = 1.1\cos[10^7 t - \beta z] \overrightarrow{a}_y A/m$$

If the wave is travelling at v = 0.5c, find:

i)
$$\mu_r$$
 ii) ϵ_r iii) β iv) λ v) z

(06 Marks)

8 a. Show that $\frac{P_{t \text{ avg}}}{P_{i \text{ avg}}} = \frac{4\eta_2\eta_1}{\left[\eta_1 + \eta_2\right]^2}$ and

$$P_{r \text{ avg}} + P_{t \text{ abg}} = P_{i \text{ avg}}.$$

Where,

Pr avg is average reflected power

 $P_{t \; avg}$ is, A power of transmitted wave in average

Pi avg is power of incident wave in average

 η_1 is intrinsic impedance of medium 1

 η_2 is intrinsic impedance of medium 2.

(12 Marks)

b. A radio station transmits power radially around the spherical region. The desired electrical field intensity at a distance of 10 km from the station is 1mV/m. Calculate the corresponding H, P and station power. (08 Marks)