USN										
-----	--	--	--	--	--	--	--	--	--	--

15EC32

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Analog Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

1 a. Define h parameters using two port systems.

(05 Marks)

- b. Derive expressions for input impedance, output impedance and voltage gain for common emitter fixed bias configuration using re model. (07 Marks)
- Find Z_i , Z_o , A_v and A_i for the network shown in Fig.Q.1(c). Given data $h_{fb} = -0.99$, $h_{ib} = 14.3\Omega$, $h_{ob} = 0.5 \mu A/v$.

OR

2 a. Explain hybrid π model.

(04 Marks)

b. Find r_e , Z_i , Z_o and A_v for the circuit shown in Fig.Q.2(b). Given data B=90, $r_o=50 k\Omega$.

(05 Marks)

c. Derive the expressions for Z_i, Z_o, A_v and A_i for fixed bias configuration using approximate Cε hybrid equivalent model.
 (07 Marks)

Module-2

3 a. List the differences between JFET and MOSFET.

(04 Marks)

b. Explain with neat sketches, operation and characteristics of n-channel E-MOSFET.

(08 Marks)

c. Find: i) input impedance ii) output impedance iii) voltage gain for the circuit shown in Fig.Q.3(c). Given data $g_m = 2ms$, $r_d = 50K\Omega$. (04 Marks)

- Find transconductance and drain current for the JFET if $I_{DSS} = 20 \text{mA}$, $V_P = -5 \text{V}$, $V_{GS} = -4 \text{V}$ (04 Marks) and gmo = 4ms.
 - Derive an expressions for Z_i, Z_o and A_v using small signal JFET amplifier under fixed bias (07 Marks) configuration.
 - Sketch the following circuit diagrams:
 - JFET ac equivalent model of source follower
 - Cascaded FET amplifier. ii)

(05 Marks)

Module-3

- An amplifier rated at a 40W output is connected to a 10Ω speaker, Find:
 - Input power required for full output if power gain is 25dB
 - Input voltage for rated output if the amplifier voltage gain is 40dB. (04 Marks) ii) (07 Marks)
 - b. Explain high frequency response of FET amplifier.
 - Explain multistage frequency effects.

(05 Marks)

(04 Marks)

- Derive an expressions for Miller input and output capacitor. (06 Marks) 6
 - b. Determine A_V, Z_i and A_{vs} for the law frequency response of the BJT amplier circuit shown (06 Marks) in Fig.Q.6(b). Assume $r_0 = \infty$.

Draw the circuit diagram of high frequency response of BJT amplifier under CE mode with (04 Marks) capacitances.

- List the conditions for sustained oscillations.
 - b. Determine the voltage gain, input impedance and output impedance with feedback for series voltage feedback having A = -100, $R_i = 10K\Omega$ and $R_o = 20K\Omega$ for feedback factor $\beta = -0.1$. (05 Marks)
 - Explain with neat circuit diagram the operation of colpit oscillator. (07 Marks)

- Show that gain with feedback in voltage series feedback system reduced by a factor 8 (05 Marks) (1 + AB).
 - b. Explain the operation of FET RC phase oscillator with neat circuit diagram. (06 Marks)
 - c. Design the RC elements of a Wein bridge oscillator for the operation at f = 10kHz and draw (05 Marks) the oscillator circuit diagram.

Module-5

- 9 a. Define class A, class B, class C and class D power amplifiers. (04 Marks)
 - b. Calculate the output voltage and the zener current for the regulator shown in Fig.Q9(b) for $R_L = 1 K \Omega$. (04 Marks)

c. Explain with neat diagram and waveforms class B push pull power amplifier. (08 Marks)

OR

- 10 a. Compare the series and shunt voltage regulators. (04 Marks)
 - b. Define the following:
 - i) Cross over distortion
 - ii) Harmonic distortion
 - iii) Percentage load regulation
 - iv) Amplifiers efficiency (04 Marks)
 - c. Calculate input power, output power and efficiency of the series fed class A power amplifier circuit shown in Fig.Q10(c). (08 Marks)

* * * * *