Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Control Engineering**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define control system. Explain open and closed loop control systems with examples.
 - With block diagram, explain:
 - Proportional controller
 - ii) Integral controller
 - iii) Proportional plus differential controller.

(08 Marks)

(08 Marks)

OR

- 2 List the advantages and disadvantages of open loop and closed loop control system.
 - Explain requirements of automatic control system.

(08 Marks) (08 Marks)

Module-2

Obtain differential equation and hence get transfer function for mechanical system shown in 3 Fig.Q.3(a). (08 Marks)

Fig.Q.3

Obtain transfer function of liquid level control system shown in Fig.Q.3(b). (08 Marks)

OR Obtain the overall transfer function for the block diagram shown in Fig.Q.4(a). (08 Marks)

Fig.Q.4(a)

1 of 2

b. Find the transfer function for the signal flow graph shown in Fig.Q.4(b) by using Mason's gain formula.

(08 Marks)

Module-3

- 5 a. A unity feed back system has $G(s) = \frac{40(s+2)}{s(s+1)(s+4)}$. Determine: i) Type of system
 - ii) All error coefficients (iii) Error for ramp input with magnitude 4. (08 Marks)
 - b. The time response of a second order system for unit step input is $c(t) = 1 + 0.2e^{-60t} 1.2e^{-10t}$. Determine: i) Closed loop transfer function ii) Undamped natural frequency and damping ratio. (08 Marks)

OR

6 Sketch the root locus for the system with

G(s)H(s) =
$$\frac{K(s+4)}{s(s^2+2s+2)}$$
. (16 Marks)

Module-4

7 Draw the Bode plot for a system having

G(s)H(s) =
$$\frac{100}{s(s+1)(s+2)}$$

- Find: i) Gain margin ii) Phase margin iii) Gain crossover frequency iv) Phase cross over frequency. (16 Marks)
 - OR
- 8 a. Draw the polar plot and ascertain the nature of stability for OLTF.

$$G(s)H(s) = \frac{12}{(s+1)(s+2)(s+3)}.$$
 (08 Marks)

- b. For a system with open loop T.F. $G(s)H(s) = \frac{1}{s(1+2s)(1+s)}$. Comment on stability of the system by Nyquist plot. Also find gain margin in dB. (08 Marks)
 - Module-5
- 9 a. Explain series and feed back compensation with block diagrams. (08 Marks)
 - b. Write note on gain and phase cross over frequency gain and phase margin in polar plot.
 (08 Marks)

OR

- 10 a. Define the terms: i) State ii) State variables iii) State vector iv) State space. (08 Marks)
 - b. Determine the state controllability and observability of the system described by

$$\dot{\mathbf{x}} = \begin{bmatrix} -3 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 2 & 1 \end{bmatrix} \mathbf{u} \qquad \mathbf{y} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mathbf{x}$$
 (08 Marks)

* * * *