Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

15MN751

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Mine System Engineering**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define Mine System Engineering. Compare System Analysis and System Engineering. 1
 - Explain Decision making choices under the situation of uncertainty.

(06 Marks)

(10 Marks)

OR

- 2 Explain the following:
 - Solution space
- (ii) Basic feasible solution
- (iii) Optimal solution
- (iv) Redundancy

(04 Marks)

Solve the following LPP graphically:

Maximize $Z = 20x_1 + 10x_2$

Subjected to $x_1 + 2x_2 \le 40$

$$3x_1 + x_2 \le 20$$

$$2x_1 + 2x_2 \le 30$$

 $x_1, x_2 \ge 0$

$$x_1, x_2 \ge 0$$

(12 Marks)

Explain the procedure for Big-M method. 3

(04 Marks)

Use dual simplex method to solve the following LPP:

Minimize $Z = 5x_1 + 6x_2$

Subjected to $x_1 + x_2 \ge 2$

$$4x_1 + x_2 \ge 4$$

$$x_1, x_2 \ge 0$$

(12 Marks)

Write a brief note on simulation technique for mining equipment selection.

(06 Marks)

Explain the deterministic model for inventory.

(10 Marks)

Module-3

A leading firm has 3 auditors, each auditor can work upto 160 hrs during the next month 5 during which time three projects must be completed. Project 1 will take 130 hrs, Project 2 will take 140 hrs and Project 3 will take 160 hrs. The amount per hour that can be billed for assigning each auditor to each project is given in table 5(a) Formulate this as a transportation problem and find optimal solution. Also find the maximum total billing during the next month. (12 Marks)

Auditor	Project					
Y	1 (Rs.)	2 (Rs.)	3 (Rs.)			
1	1200	1500	1900			
2	1400	1300	1200			
3	1600	1400	1500			

Table 5(a)

Explain the steps in Penalty method (Transportation Problem).

(04 Marks)

OR

6 a. Solve the following assignment problem, if it is treated as a salesman problem and the cell entries of Table 6(a) represent cost in rupees. Find the least cost route such that salesman does not visit any city twice.

(08 Marks)

	A	В	C	D	Е
A	- 0	2	5	7	1
В	6	-	3	8	2
C	8	7	-	4	7
D	12	4	6	-	5
E	1	3	2	8	-

Table 6(a)

b. Determine (i) Optimal Job assignment (ii) The cost of assignment for the problem in the table 6(b) (08 Marks)

		CHUI - MICHOLIC		1960	1.0
	J_1	J_2	J_3	J_4	J_5
A	10	3	3	2	8
В	9	7	8	2	7
C	7	5	6	2	4
D	3	5	8	2	4
Е	9	10	9	6	10

Table 6(b)

Module-4

- 7 a. Define the following terms:
 - (i) Network
- (ii) Activity
- (iii) Event
- (iv) Redundant Activity
- (v) Critical Path (10 Marks)
- b. Draw a Network diagram for the set of activity given in Table 7(bi) and Table 7(bii)

Activity	A	В	C	D	Е	FG	Н
Precedence	-4	A	A	В	B, C	E D, F	G
		T	able	7(b	i)	, ,	-

Activity	A	В	C	D	E	F	G	Н	I
Precedence	-	A	A	-	D	B, C, E	F	D	G, H

Table 7(bii)

(06 Marks)

OR

8 A project consists of the following jobs and their duration given in Table 8

-	jeet commit	oto of the folio	wing jobs and then t
	Activity	Precedence	Duration (in days)
	A	(() -	10
	В	A	9
	C	A	4 6
	D	В	7
	Е	В	5
	F	C, D	9
	G	E, F	8

Table 8

- i. Draw a network diagram.
- ii. Identify the critical path.
- iii. Find the project duration.
- iv. Calculate the floats Total, Free, Independent
 & Interference.
- v. Compute slack time for each event.

(16 Marks)

Module-5

- 9 a. Explain the characteristic of Queuing system.
 - Explain the characteristic of Queuing systemClassify the Queuing models.

(12 Marks)

(04 Marks)

OR

- 10 a. Explain the following terms:
 - (i) Pay off matrix
- (ii) Strategy
- (iii) Zero sum game
- (iv) Saddle point.

(08 Marks)

b. In the following two Person Zero Sum game stable? Solve the game given in Table 10(b).

	2000 Bass.		Prayer	B	
		I	II	III	IV
A	I	5	-10	9	0
ayer	II	6	7	8	1
Pra	III	8	7	15	1
7	IV	3	4	-1	4

Table 10(b)

(08 Marks)

* * * * *