15CS32

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Analog and Digital Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- Explain the working of N-channel MOSFET, with the help of neat diagram. (08 Marks)
 - (04 Marks) What are applications of FET? b.
 - What are the ideal characteristics of op-amp?

- Explain the performance parameters of op-amp. (08 Marks) 2
 - Explain the relaxation oscillator, with the help of neat diagram.

Module-2

Minimize the following Boolean function using K-map method, 3

 $F(A, B, C, D) = \sum m(0, 2, 3, 8, 10, 11, 12, 14)$

(06 Marks)

(04 Marks)

(08 Marks)

b. Apply Quine Mc-Cluskey method to find the essential prime implicants for the Boolean expression,

 $F(A,B,C,D) = \sum m(0,1,2,3,10,11,12,13,14,15)$

(10 Marks)

Minimize the following Boolean function using K-map method.

 $F(A,B,C,D) = \Pi M(0,1,2,3,4) + \sum d(5,7)$

(06 Marks)

What is Hazard? Explain its types with examples.

(10 Marks)

Module-3

Implement the following function using 8:1 multiplexer 5

 $F(A,B,C,D) = \sum m(1,2,5,7,8,10,11,13,14,15)$

(06 Marks)

- b. Realize the following function using 3:8 decoder
 - (i) $F(A, B, C) = \sum m(1, 3, 4)$

(ii) $F(A, B, C) = \sum m(3, 5, 7)$

(04 Marks)

c. Design a priority encoder using the truth table. The order of priority for three inputs is (06 Marks) $X_1 > X_2 > X_3$

Truth Table

Input				Output	
S	X_1	X_2	X_3	A	В
0	X	X	X	0	0
1	1	X	X	0	1
1	0	1	X	1	0
1	0	0	1	1	1
1	0	0	0	0	0

OR

- (08 Marks) Design seven segment decoder using PLA. 6 (08 Marks) Design Half adder and Full adder.
 - Module-4

7

(08 Marks)

Explain Smith contact bounce circuit. Give state transition diagram and characteristic equations for SR-FF and JK-FF. (08 Marks) b.

- With neat diagram, explain Ring and Johnson counter. (08 Marks) 8 a.
 - What is shift register? With neat diagram, explain 4-bit parallel in serial out shift registers. (08 Marks)

Module-5

- Define counter. Design mod-8 up synchronous counter using JK-FF. (12 Marks) 9 (04 Marks)
 - Write VHDL code for mod-8 up counter. b.

OR

- Explain the binary ladder with digital of 1000. (06 Marks) 10 a. (10 Marks)
 - Explain with neat diagram, single slope A/D converters.