CBCS Scheme

USN				15CS43

Fourth Semester B.E. Degree Examination, June/July 2018 Design and Analysis of Algorithms

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Write an algorithm to find the maximum element in an array of n element. Give the 1 mathematical analysis of this non-recursive algorithm. (06 Marks)
 - Explain the asymptotic notations BigO, Big Ω and big theta used to compare orders of growth of an algorithm.
 - Explain with an example how a new variable count introduced in a program can be used to find the number of steps needed by a program to solve a particular problem instance.

(04 Marks)

OR

- Write a recursive function to find and print all possible permutations of a given set of (05 Marks)
 - Solve the recurrence relation: M(n) = 2M(n-1) + 1. Take M(1) = 1, M(n) is given for (05 Marks)
 - Define algorithm. What are the criteria that an algorithm must satisfy (06 Marks)

Module-2

- 3 Write a function to find the maximum and minimum elements in a given array of n elements by applying the divide and conquer technique. (06 Marks)
 - b. Explain the divide and conquer technique. Give the general algorithm DAndC(P)[Where P is the problem to be solve to illustrate this technique.
 - Apply source removal method to obtain topological sort for the given graph in Fig.Q3(c). (06 Marks)

Fig.Q3(c)

OR

- Explain the merge sort algorithm. Illustrate with an example and give the worst case efficiency of merge-sort. (08 Marks)
 - Apply quick sort algorithm to the following set of numbers. 65, 70, 75, 80, 85, 60, 55, 50, 45.

(08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

(02 Marks)

OR d

- 8 a. Explain Bellman Ford al to find shortest path from single source to all destinations for a directed graph with negative edge cost. (08 Marks)
 - b. Apply Warshall's algorithm to the digraph given below in Fig.Q8(b) and find the transitive closure.

 (08 Marks)

Fig.Q8(b)

Module-5

- 9 a. Apply backtracking method to solve subset—sum problem for the instance d = 30 and (08 Marks) (08 Marks)
 - Explain how travelling salesman problem can be solved using branch and bound technique.

 (06 Marks)
 - Define deterministic and non deterministic algorithms.

OR

- a. What is Hamiltonian cycle? Explain the algorithm to find the Hamiltonian cycle in a given connected graph. Write the functions used for generating next vertex and for finding Hamiltonian cycles.

 (09 Marks)
 - b. Apply the best-first branch-and-bound algorithm to solve the instance of the given job assignment problem. (07 Marks)

Job1	Job2	Job3	Job4
9	2	7	8 Person a
6	4	3	Person b
5	8	1	28 Person c
7	6	2	4 Person d