Fifth Semester MCA Degree Examination, June/July 2018 System Simulation & Modeling

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Explain the steps of simulation study with a neat diagram. (10 Marks)
 - b. Define system. Explain the components of a system for communication system. (10 Marks)
- 2 a. Discuss the concept of discrete random variables and continuous random variables.

b. A production process manufactures computer chips on the average of 2% non-conforming. Everyday a random sample of size 50 is taken from the process. If the sample contains more than 2 non-conforming chips, the process will be stopped. Determine the probability that the process is stopped by the sampling scheme.

(07 Marks)

c. A mainframe computer crashes in accordance with a Poisson process with a mean rate of one crash every 36 hours. Determine the probability that the next crash occur between 24 and 48 hours after the last crash.

(07 Marks)

- 3 a. List the important considerations for generating Random numbers. (65 Marks)
 - b. Use the linear congruential method to generate a sequence of random numbers with the following data:

 $X_0 = 27$, a = 17, c = 43, m = 100

(07 Marks)

- c. Apply Kolmogorov-Smirnov test for the following random numbers 0.44, 0.81, 0.14, 0.05, 0.93 to test the uniformity with significance α of 0.05. Write the conclusion. Given critical value is 0.565.
- 4 a. Discuss the characteristics of Queuing system.
 b. Depict the snapshot of (M, N) inventory system table with the given data:

(10 Marks)

- (i) M = 11 units, N = 5 days, Number of cycles = 3.
 - (ii) Random digit assignment for daily demand: Demand: 0, 1, 2, 3, 4
 Probability: 0.10, 0.25, 0.35, 0.21, 0.09
 - (iii) Random digits for lead time 5, 0, 3, for cycle 1, cycle 2 and cycle 3 respectively. 8 units are expected to arrive in next 2 days.
 - (iv) Random digits for demand Cycle 1: 24, 35, 65, 81, 54 Cycle 2: 3, 87, 27, 73, 70

Cycle 3: 47, 45, 48, 17, 09

- (v) Beginning inventory level: 3 Solve the following:
 - Find the average ending units in inventory.
 - Find the number of days shortage occurs.

(10 Marks)

5 a. Explain event scheduling algorithm with a system snapshort.

(10 Marks)

- b. Define the following:
 - (i) System state
- (ii) Event

(iii) Event notice

- (iv) Imminent event
- (v) process-interaction approach.

(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

13MCA52

Explain the steps in modeling the input data.

(10 Marks)

Records pertaining to the monthly number of jobs-related injuries at an underground coalmine were being studied by fedral agency. The values for the past 100 months were as follows:

Injuries per month	Frequency of occurrence
0	35
1	40
2	(i)13
3	6
4	4
5	1
6	1

Apply the chi-square test these data the hypothesis that the underlying distribution is Poisson for the significance value is 0.05; the critical value is 5.99 (10 Marks)

Explain iterative process of calibrating a model with neat diagram.

(08 Marks)

Explain Naylor and Finger approach for validating a model.

(12 Marks)

Write short notes on point estimation and interval estimation.

(10 Marks)

b. Dist and discuss the method of reducing point estimator bias in a steady state simulation.

(10 Marks)