3

USN

First Semester MCA Degree Examination, Dec.2018/Jan.2019 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. Define: i) Principle of duality ii) Tautology iii) Contradiction. (06 Marks)
 - b. Prove that for any three propositions p, q and r, the compound propositions

 - ii) $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$.

are tautologies using truth tables.

(06 Marks)

- c. Prove the following logical equivalences using laws of logic.
 - i) $p \vee [p \wedge (p \vee q)] \Leftrightarrow p$
 - ii) $[p \lor q \lor (\sim p \land \neg q \land r)] \Leftrightarrow (p \lor q \lor r)$

(08 Marks)

- 2 a. Prove the following logical equivalences using truth tables:
 - i) $[p \land (p \rightarrow q) \land r] \Rightarrow [(p \lor q) \rightarrow r]$
 - ii) $\{[p \lor (q \lor r)] \land \neg q\} \Rightarrow p \lor r.$

(06 Marks)

- b. Test whether the following arguments are valid.
 - i) $p \rightarrow q$
- 11) $p \rightarrow 0$
- $p \vee r$
- $\exists q \lor \exists s$
- \therefore q \vee s
- $\therefore \neg (p \wedge r).$

(08 Marks)

- c. Define: i) open statement ii) universal and existential quantifiers with an example for each.
 (06 Marks)
 - Give: i) direct proof ii) indirect proof iii) proof by contradiction for the following statement. "If n is an odd integer, then n + 9 is an even integer". (06 Marks)
- b. State and prove distributive laws.

(06 Marks)

(06 Marks)

- c. Among the integers from 1 to 200, find the number of integers that are:
 - i) not divisible by 5 ii) divisible by 2 or 5 or 9
- iii) not divisible by 2 or 5 (or) 9.

d. Find out the member of arrangements of no adjacent letter "A" in "TALLAHASEE".

(02 Marks)

4 a. What are the two steps involved in induction principle? Prove that:

$$1^2 + 3^2 + 5^2 + 7^2 + \dots + (n-1)^2 = 1/3^n(2n-1)(2n+1).$$

(06 Marks)

b. Solve the recurrence relation:

$$\sum_{i=1}^{n} \frac{F_{i-1}}{2^{i}} = 1 - \frac{F_{n-2}}{2^{n}}.$$
 (08 Marks)

- a. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 5\}$. Determine the following: 5
 - i) $A \times B$
 - ii) number of relations from A to B
 - iii) number of relations form A to B that contain (1, 2) and (1, 5)
 - iv) number of binary relation on A.

(06 Marks)

- b. Let R and S be relations on set A. Prove that:
 - i) If R and S are reflexive so are $R \cap S$ and $R \cup S$
 - ii) If R and S are symmetric, so are $R \cap S$ and $R \cup S$
 - iii) If R and S are antisymmetric, so are $R \cap S$.

(06 Marks)

- c. Define a Poset. For the given set A, draw the digraph. Verify whether (A, R) is a Poset and (08 Marks) draw the Hasse diagram of the same $A = \{1, 2, 3, 4\}$.
- Find the least number of ways of choosing three different numbers from 1 to 10 so that all 6 (04 Marks) choices have the same sum.
 - b. Let $f: R \to R$ be defined by

$$f(x) = \begin{cases} 3x - 5 & \text{for } x > 0 \\ -3x + 1 & \text{for } x \le 0 \end{cases}$$

- i) Determine f(0), $f^{-1}(0)$, f(5/3), f(-3)
- ii) Find $f^{-1}([-5, 5])$, $f^{-1}([-6, 5])$.

(07 Marks)

- c. Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4, 5\}$. Find whether the following functions are : i) one to one ii) onto.
 - i) $f = \{(1, 1)(2, 3)(3, 4)\}$

 - ii) $g = \{(1, 1), (2, 2), (3, 3)\}.$

(03 Marks)

- d. Find the number of ways of distributing 4 distinct objects among 3 identical containers with (06 Marks) some containers empty.
- Define: i) graph ii) sub graph iii) compliment of a graph iv) bipartite graph... (06 Marks)
 - b. Define chromatic member of a graph. Prove that the chromate member of any connected biparatite graph with atleast two vertices is 2. (06 Marks)
 - Find the shortest path from vertex a to e in the weighted graph using Dijksta's algorithm and (08 Marks) show the steps in detail.

- Define a tree. What is the maximum height a tree with n vertices can attain, if:
 - i) it's a binary tree ii) a-complete binary tree?

(06 Marks)

b. Apply merge sort on 6, 2, 7, 3, 4, 9, 5, 1, 8 and explain the steps in detail.

(06 Marks)

List out the i) pre order ii) post order iii) inorder of the given tree. (08 Marks)

Fig.Q8(b)