ADAG GATISME

								(YL!		0	01		51		1						
USN															A	(5					1	5BT51
		Fi	fth S	Sem	iesi	ter	В	E.	De	egr	ee :	Exa	amir	ıat	ion	, D	ec.2	018	/Ja	n.20	19	
													eac	Tillia								
		2.1											4	Y7					.4	1051	3	
Time: 3 hrs.										A						4	M	lax.	Mar	ks: 80		
	N	ote: /	4nsw	er ai	ny I	FIV	Ef	full q	jue:	stion	1S, C	choo	sing	ONI	E fu	ll qu	estio	n fre	om ei	ach n	nodu	le.
								•				•			,	1		,				
1	a. Define the following: i) Order and molecularity of a reaction ii) Arr										Al		a 1arr									
1	iii) Collision theory iv) Activated complex theory.									AIII	(08 Marks)											
	b. Milk is pasteurized, if it is heated to 63°C for 30 min, but if is it heated to 74°C it only need												ly needs									
	15 sec, for the same result. Find the activation energy of this sterilization process. (08 Marks														8 Marks)							
							4					OI	₹ ,	47	Y							
2	a. Explain differential method of analysis of batch reactor data.											(0	8 Marks)									
	b.									the	foll	lowi	ng rea	actio	on.							
		ΓA	`P	\xrightarrow{K}	AD)P +	- E	nerg	у	10-4	T.A.	75	1.0-3		0	10-3	4.4	1.0	-3		(0	8 Marks)
			C_A ,							5			< 10 ⁻³			25		$\frac{\times 10}{0275}$		$\frac{0.1 \times 0.0}{0.0}$		
		l	VA,	11101	00/1	10		0.	012	.5		0.01	175		7.02	23	0.	.0272	,	0.0.	50	
										4 th		odu	ıle-2						2			
3		Deri											1		Y.	- 1	1					0 Marks)
	b.			m Su									s h						ataly		acti	
		Suci	ose -			\rightarrow	pro	auc	t, st	artır	ig v	vith	sucro	se c	onc	entra	tion	2 mc	oles/I	it and	d fee	d rate 25
	lit/min. The kinetics of reaction is given by $-r_A = \frac{100C_A}{1 + 0.50C_A}$ m moles/lit.min. Find the													Find the								
	volume of the reactor to achieve a conversion of 95% in MFR. (06 Marks)																					
				1	4						h				4	7					(-	,
4	a.	Dari	ve the	a Day	rfor	mor	200	oan	atic	w 0.4) EDE	OF	₹.		C Page							
7	b.												S 4 -1	r_ =	KO	$\frac{1}{2}$ ta	akes	nlace	e wit	h 50°	(1 % co	0 Marks) nversion
		in a	PFR.	Wh	at v	will	be	the	cor	ivers	sion	i, if	the o	rigir	nal	react	or is	repla	aced	by a	PFR	6 times
		the v	olum	e of	'PF	R?															(0	6 Marks)
							Y				M	odu	le-3									
5	a.										ity i	in bi	oreac									6 Marks)
	b. The concentration readings in the table represents a continuous response to a delta function												inction									
	(pulse input) in to a reactor, find average time and tabulate E V _S t plot (exit age distribution).													ibution). 0 Marks)								
			Time	e 't'	in r	nin		1	Y					0	5	10	15	20	25	30	35]
			Trac	er ir	ıput	t coi	nce	ntra	tion	ı – ir	n g/	l of	fluid	0	3	5	5	4	2	1	0	

 $\label{eq:order} \begin{array}{c} \textbf{OR} \\ \textbf{Sketch F, C and E curves. Derive relation between them.} \\ \textbf{With RTD experiment, explain how to determine conversion } X_A \text{ in reactor.} \end{array}$ 6

(08 Marks) (08 Marks)

(08 Marks)

Module-4 (10 Marks) Derive Michaleis – Menten equation. 7 (06 Marks) Explain Non – competitive inhibition. Explain how do evaluate Michaleis - Menten constants Vm and Km. (08 Marks) b. Explain the terms: i) Co - factor ii) Apoenzyme iii) Co – enzyme iv) Enzyme (08 Marks) activity. Module-5 Explain Monod Model, how do you evaluate μ_m and K_s . (10 Marks) Write short notes on growth of filamentous organisms. (06 Marks) OR Write critical notes on different types of sterilization. (08 Marks) 10 a.

Explain Death kinetics of Microorganisms.