Fourth Semester B.E. Degree Examination, June/July 2017 Aerodynamics – I

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- a. Derive the differential form of energy equation through control volume approach. (08 Marks)
 - b. Consider the velocity field given by $u = \frac{y}{(x^2 + y^2)}$ and $v = \frac{x}{(x^2 + y^2)}$. Calculate the equation of the streamline passing through the point (0, 5) and calculate the circulation around a circular path of radius 5m. Assume that u and v are in units of meters per second. (08 Marks)

OR

2 a. Derive the differential form of momentum equation through control volume approach.

(08 Marks)

b. Derive an equation for vorticity ξ .

(08 Marks)

Module-2

- 3 a. Derive an expression for the axial force coefficient (Ca) and normal force coefficient (C_n) of an airfoil. (12 Marks)
 - b. Consider an airfoil at 12° AoA. The normal and axial force coefficients are 1.2 and 0.03 respectively. Calculate the lift and drag coefficient. (04 Marks)

OR

4 a. Define centre of pressure and aerodynamic centre. Derive $M'_{LE} = -\frac{C}{4}L' + M'_{C/4} = -X_{Cp}L'$

for centre of pressure with neat sketches showing force and moment system. (08 Marks)

b. Consider two different points on the surface of an airplane wing flying at 80 m/s. The pressure coefficient and flow velocity at point 1 are -1.5 and 110 m/s respectively. The pressure coefficient at point 2 is -0.8. Assuming compressible flow, calculate the flow velocity at point 2.

(08 Marks)

Module-3

- 5 a. Briefly explain the following elementary flows with neat sketches and write Ψ and ϕ for each of them:
 - i) Uniform flows
 - ii) Source and sink flows
 - iii) Doublet flow
 - iv) Vortex flow

(12 Marks)

b. Consider the lifting flow over a circular cylinder. The lift coefficient is 5. Calculate the peak (negative) pressure coefficient. (04 Marks)

OR

- 6 a. Derive the expression $C_1 = 2\pi\alpha$, using the classical thin airfoil theory. (08 Marks)
 - b. Consider the lifting flow over a circular cylinder with a diameter of 0.5 m. the freestream velocity is 25 m/s, and the maximum velocity on the surface of the cylinder is 75 m/s. The freestream conditions are those for a standard altitude of 3 km. Calculate the lift per unit span on the cylinder.

 (04 Marks)
 - c. Consider a thin flat plate at 5 deg angle of attack, calculate the :
 - i) Lift coefficient
 - ii) Moment coefficient about the LE
 - iii) Moment coefficient about the quarter chord point and
 - iv) Moment coefficient about the TE.

(04 Marks)

Module-4

- 7 a. Derive an expression for lift coefficient and induced drag coefficient in terms of circulation strength $\Gamma(Y)$ for a finite using through Prandtl's classical lifting line theory. (10 Marks)
 - b. Obtain the expression for the velocity induced by infinite vortex filament using the Biot-Savart law. (06 Marks)

OR

- 8 a. Derive the expression for the induced angle of attack and induced drag coefficient using elliptical lift distribution. (10 Marks)
 - b. Discuss briefly the following:
 - i) Vortex filament
 - ii) Helmholtz's vortex theorem

(06 Marks)

Module-5

What are high lift devices? Discuss in detail about the high lift devices and explain their effects on airplane performance with a neat sketch. (16 Marks)

OF

- 10 a. Discuss the advantages and disadvantages of forward-swept wings. (08 Marks)
 - b. Write short notes on the following:
 - i) Formation of flight
 - ii) Influence of down wash on tail plane
 - iii) Ground effect

(08 Marks)

* * * * *