GBCS Scheme

	11	
USN		17ELN15

First Semester B.E. Degree Examination, Dec.2017/Jan.2018 Basic Electronics

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- a. Explain the operation of PN junction diode under forward and reverse biased conditions, with the help of VI characteristics curve. (06 Marks)
 - b. Derive the relation between α and β . Calculate I_C and I_E for transistor that has $\alpha_{dc}=0.98$ and $I_B=100~\mu A$.
 - c. With a neat circuit diagram and waveforms, explain the working of centre-tap full wave rectifier and derive the efficiency for the same.

 (08 Marks)

OR A

- 2 a. With a neat diagram, explain the operation of PNP and NPN transistor. (08 Marks)
 - b. A half wave rectifier from a supply 230 V 50 Hz with step down transformer ratio 3:1 to a resistive load of 10 K Ω . The diode forward resistance is 75 Ω and transformer secondary is 10 Ω . Calculate the DC current, DC voltage, efficiency and ripple factor. (06 Marks)
 - c. With neat circuit diagram, explain the common emitter circuit and sketch the input and output characteristics. (06 Marks)

Module-2

- 3 a. With a necessary equation and circuit, explain the base-bias transistor circuits. (06 Marks)
 - b. Design an Adder using op-amp to give the output voltage.

 $V_0 = -[2V_1 + 3V_2 + 5V_3]$

(06 Marks)

c. Derive the equations for output voltage for an inverting amplifier and an integrator.

(08 Marks)

OR

- 4 a. Explain the characteristics of an ideal op-amp. Mention the applications. (06 Marks)
 - b. Accurately analyze the voltage divider bias which has $V_{CC}=18~V,~R_1=33~K\Omega,~R_2=12~K\Omega$ and $R_E=1~K\Omega.$ Determine $V_E~V_C,~V_{CE},~I_C$ and Q point, when transistor $h_{fe}=200.$ (08 Marks)
 - c. Write short notes on op-amp virtual ground concept.

(06 Marks)

Module-3

- 5 a. Perform the following:
 - i) Convert $(57345)_{10} = ($ $)_{16}$
 - (ii) Subtract $(28)_{10} (19)_{10}$ using 2's complement method.

(06 Marks)

b. Realize Y = AB + CD + E using NAND gate.

(06 Marks)

c. Explain the full adder circuit with truth table. Realize the circuit for sum and carry using logic gates. (08 Marks)

OR

	1		2			
6	a.	Perform the following:				
		i) Convert $(FA27D)_{16} = ()_2 \rightarrow = ()_8 = ()_{10}$				
		ii) Subtract 10.0101 – 101.1110 using 1's compliment method.	(06 Marks)			
	b.		(06 Marks)			
	c.	State and prove De Morgan's theorem using two variable.	(08 Marks)			
		Module-4				
7	a.	Bring out differences between his hope and morning	(04 Marks)			
	b.	Explain SR flipflop with circuit diagram and truth table.	(06 Marks)			
	c.	With a neat block diagram explain the architecture of 8051 microcontroller.	(10 Marks)			
		OR (O)				
8	a.	Explain the operation of NAND gate latch with circuit and truth table.	(10 Marks)			
	b.	What is stepper motor? With a neat block diagram, explain the working pr	rinciple of			
		microcontroller based stepper motor control system	(10 Marks)			
		Module-5				
9	a.	Define communication. With neat block diagram, explain the elements of communication.				
		system.	(06 Marks)			
	b.	Derive an expression for amplitude modulation and draw the necessary waveforms	S.			
		will be a construction and promise transducers	(08 Marks) (06 Marks)			
	c.	What is transducer? Compare the active and passive transducers.	(00 Marks)			
		OR O				
10		Bring out the difference between amplitude modulation and frequency modulation	1			
10	a.	Bring out the difference between ambitude modulation and neglectory modulation	(06 Marks)			
	h	. If a FM wave represented by the equation $V = 10\sin(8 \times 10^8 + 4\sin 1000t)$, calculate:				
	b.		***			
		.)	(06 Marks)			
	0	iii) Modulation index With necessary diagram and equations, explain the following:	(00 Marks)			
	c.					
		i) Piezo-electric transducer ii) LVDT.	(08 Marks)			
		II) LVD1.	(50 1.444.165)			
