Journal of Colloid and Interface Science 518 (2018) 200-215

Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

SiO₂@LaOF:Eu³⁺ core-shell functional nanomaterials for sensitive visualization of latent fingerprints and WLED applications

C. Suresh ^{a,b}, H. Nagabhushana ^{a,*}, R.B. Basavaraj ^a, G.P. Darshan ^c, D. Kavyashree ^d, B. Daruka Prasad ^e, S.C. Sharma ^{f,g}, R. Vanithamani ^h

^a Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572103, India

^b Department of Physics, Govt. First Grade College, Tumkur 572103, India

^c Department of Physics, Acharya Institute of Graduate Studies, Bangalore 560 107, India

^d Department of Physics, Channabasaveshwara Institute of Technology, VTU Affiliated, Gubbi 572 216, India

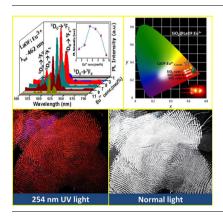
^e Department of Physics, BMS Institute of Technology and Management, VTU-Affiliated, Bangalore 560 064, India

^fAvinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore 641043, India

^g Department of Mechanical Engineering, Jain University, Advisor, Jain Group of Institutions, Bangalore 560069, India

^h Department of Biomedical Instrumentation Engineering, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore 641043, India

HIGHLIGHTS


- Solvothermal route is employed to fabricate nanostructured core-shell SiO₂@LaOF:Eu³⁺.
- Core-shell and the number of coats were confirmed using advanced techniques.
- Luminescence quantum efficacy of 56.7% was observed for the prepared samples.
- Latent finger prints up to level-3 were recognized by using these powders as dust.
- Forensic and security applications were realized with the prepared samples.

ARTICLE INFO

Article history: Received 27 November 2017 Revised 21 January 2018 Accepted 25 January 2018

Keywords: Core-shell Latent fingerprint Photoluminescence Sweat pores Anti-counterfeiting

G R A P H I C A L A B S T R A C T

ABSTRACT

For the first time, intense red color composite of SiO₂@LaOF:Eu³⁺ core-shell nanostructures (NS) were fabricated via facile solvothermal method followed by thermal treatment. The obtained core-shell particles display better spherical shape and non-agglomeration with a narrow size distribution. Photoluminescence (PL) emission spectra exhibits intense peaks at ~593 nm, 611 nm, 650 nm corresponds to ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0, 1 and 2) Eu³⁺ transitions respectively. The spectral intensity parameters and Eu-O ligand behaviors are estimated by means of Judd-Ofelt (J-O) theory. CIE co-ordinates are found to be (x = 0.63, y = 0.36) which is very close to standard NTSC values (x = 0.67, y = 0.33). CCT value is ~3475 K which is less than 5000 K, as a result this phosphor is suitable for warm light emitting diodes. The optimized core-shell SiO₂ (coat III)@LaOF:Eu³⁺ (5 mol%) was used as a fluorescent labeling marker for the visualization of latent fingerprints on both porous and non-porous surfaces. Obtained fingerprints are highly sensitive and selective also no background hindrance which enables level-I to level-III fingerprint ridge characteristics. Observed results indicate that the significant improvement in luminescence of coreshell NS can be explored as a sensitive functional nanopowder for advanced forensic and solid state lightning applications.

© 2018 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail address: bhushanvlc@gmail.com (H. Nagabhushana).