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Abstract
Latent fingerprints (LFPs) are the major physicaidences for identification of individuals duringirme spot
investigation. Till date, numerous methods werdofeéd to visualize LFPs. However, simple, accurara cost-
effective method has wide scope in advanced focefiesid. In our work, CgSiO.Dy** nanopowders (NPs) were
fabricated via solution combustion route. The omed sample was employed for visualization of cepled LFPs
by following cost effective powder dusting methdthe obtained results reveal complete three levelsdge
characteristics with high sensitivity, reprodudtil selectivity, and reliability on various complesurfaces. The
photoluminescence (PL) spectra consist of inteesé&pat ~ 480 and 574 nm owing4Fg,2—>6H15,2 and*Fo;,—°Hisp
4f transitions of DY ions, respectively. The photometric properties onthat the samples exhibit intense white
emission with high color purity. Therefore, the g@et prepared NPs could be a definitive choice casreced
luminescent NPs for forensic, solid state lightimgl portable FED devices.

Keywords. Solution combustionPhotoluminescenceSolid state lightingjFingerprint patterns; Sweat pores; Rare
earths
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1. Introduction

White light-emitting diodes (WLEDs) have emergecdhast generation illumination technology. The WLE®sate
numerous interest for research community due tar thigh luminous efficiency, long lifetime, energgaving,
harmlessness, easy fabrication, high stability andironmental safety [1-3]. Recently, much resedraks been
carried out to enhance the efficiency of new gei@aVLEDs. Thus, rare earth (RE) ions activatedgphors have
attracted much attention of many scientists dueh&r unique electronic, optical and chemical prdpe that
construct the phosphors constructive wide spreadapglications, namely, laser materials, optical liiaps,
photocatalysts, sensors and anti-counterfeiting {@#k Therefore, the trivalent RE ions doped alfste hosts are
receiving more attention as optical materials engtvhich are capable to emit in visible and ndarégions [5].

Among many RE ions, Dy ions are extensively investigated because it pesviwo typical emission bands
in blue (480 nm) and yellow (570 nm) regions, whick essential for full color displays [6-8]. Ind#ibn, through
appropriate tuning of yellow-to-blue (Y/B) emissionensity, it was likely to achieve pure whiteHtgemission from
Dy** doped nanophosphors. Therefore, it was interestisgudy the luminescence properties of Dy different host
lattices.

Silicates are considered to be the best host raltdar luminescence centers due to their excetleammical
and thermal stability, long persistence time, beftemability, multicolor phosphorescence, easy ppration,
resistance for alkali and oxygen [9]. The RE ons$iion metal ions doped silicates has been oftgrtarest for
researchers stemming from their intense luminescemsission in blue, green and red emission redibdsl2].
However, fabrication of nanophosphors followed inproved techniques creates wide applications. Erety of



methods were designed, including templating metkolgel reaction, sonochemical, solution combustamute, and
etc. [13-16]. Among the reported synthesis techesgthe solution combustion route was a low-cosg saving and
high-yield approach.

Fingerprints (FPs) were considered to be a vitata®for identification of individuals in advancémensic
investigation. The ridge patterns on the tips ahho fingers were unique and remain the same thoaudtiespan.
Most commonly found FPs during crime spot invesiigawas latent; as a result efficient methods wereessary to
visualize such as LFPs [17-19]. Till date, numermethods (chemical, optical) have been establishedsualize
LFPs. However, most of the followed techniques hsaxeral drawbacks, such as low sensitivity, higbkground
hindrance, complicated procedure, high toxicity &mer visualization restricted only levels 1 anddje details due
to poor image qualities. These ridge details waheforged by artificial skin imprints. Thereforine visualization
of level 3 ridge characteristics would necessiatercoming such artificial FPs anti-counterfeitiagd it creates
numerous interests for researchers [20].

Nanosized particles with spherical morphology weomsidered to be an innovative advancement for
visualization of LFPs in powder dusting method. offers superior sensitivity, little background hiadce,
extraordinary efficiency, lesser toxicity and stré®e detection of LFPs, which was the essentiglirement for
forensic investigators [21]. Further, many reseesdiiave been available in the literature for tisealization of LFPs
by making use of NPs by exciting with ultraviol&t\() radiation. The UV light has many drawbacks irtthg high
background interference owing to the significartbefluorescence from the substrates, photo damagfeetskin and
eyes of the operators, and the possibility of seireadiation-induced damage. Therefore, NPs wharhreveal well
defined level 3 ridge details under normal lightdnavide scope of applications in the field of f@enscience [22].

In our present work, novel €3i0;Dy*" (1 mol%-11 mol%) NPs were fabricated by bio-insgisimple
solution combustion route. The optimized sample exgdored as a novel labeling agent for LFPs vigatibn on
various porous and non porous surfaces under navhitd light.

2. Experimental

2.1. Materialsand methods

Solution combustion route was employed for theitattion of CaSiO,:Dy*" (1 mol%—11 mol%) NPs. The starting
materials used for the preparation were calciunmatat tetrahydrate (Ca(NR-4H0; Sigma-Aldrich; 99%),
dysprosium nitrate (Dy(Ngs-H,O; Sigma-Aldrich; 99%) and fumed silica source as axidizer and oxalyl
dihydrazide (ODH: gH¢N4O,) was used as a fuel. The stoichiometric quantifesxidizers and fuel were thoroughly
mixed in double distilled water using a magneticret. The clear solution was placed into a pretéeanuffle
furnace maintained at ~ 500 + 4©. Initially, the solution was thermally dehydrat&ut ignited with the liberation of
large amount of gases {NO,, etc.). After the completion of process, the patduas obtained and calcined at ~ 950
°C for ~ 3 h. The schematic illustration for the thasis of Cg5i0,:Dy** (1 mol%—11 mol%) NPs is shown in Fig. 1.
2.2. Characterization

The powder X-ray diffraction (PXRD) measurementsevecorded using Shimadzu made model-7000, havhigh
precision verticab—f goniometry at a wavelength of 0.154 nm. Morpholegyl size of the NPs were examined by
scanning electron microscopy (SEM, Hitachi-3000) amnsmission electron microscopy (TEM, TECNAI 63
Diffuse reflectance (DR) spectroscopy of the sasipl@as recorded on a Perkin Elmer (Lambda-35) speetier.
Photoluminescence (PL) measurements were carriagsmg a Horiba Fluorolog-3, modular Spectroflmeater.

2.3. Visualization of LFPsby staining Ca,SiO4:Dy* (3 mol%) NPs

All the LFPs were collected from single donor ok&2f years old male. The hands of the donor wertghly
washed with soap and cleaned with water, propamal ,ethanol. Then, washed hands were dried igexit)y rubbed
on forehead and deposited on various forensicewlatirfaces. The optimized £Si0,:Dy** (3 mol%) NPs were
carefully stained on LFPs and excess powder wasveth by smooth brushing method. The visualizatibn
fingerprint images were recorded under normal lightusing a 50 mm /2.8G ED lens Nikon D3100/AF§itdl
camera. Fig. 2. shows the pictorial representaifovisualization of LFPs stained by £20,:Dy** (3 mol%) NPs by
powder dusting method. The superiority of visuali¥s on various porous and non-porous surfacesvasated
by using Bandey’s scale developed by UK Home Offidgs five point scale system was extensively usegstimate
the quality of fingerprints only in research circstance instead of in legal procedures (Table 1lkoAding to
Bandey’s system, grade 3 or grade 4 fingerprint®wensidered for explicit identification of inddtials.

3. Resultsand discussion



Fig. 3(a) shows the PXRD profiles of pure and®D§l mol%-11 mol%) doped G&iO, NPs. Intense diffraction
peaks belonging to monoclinic system (JCPDS NoO®8b) of CaSiO;Dy>" was observed. The PXRD patterns of
the doped samples resembles with the undoped sample unit cell of perovskite G8iO,, Si** ions are positioned
at the center of a cube;?Oons are positioned at six-face centers of theecaid C&" ions were positioned at the
eight apex angles of cube. Octahedrons were madef §i'* ions and the nearest neighbof Gons and its
coordination number is six. Icosahedrons were maref C&* ions and the nearest neighbot @ns and the co-
ordination number are twelve. The co-ordination hars of the both &iions and C& ions were eight [23]. As the
Dy** concentration increases, no significant changes whserved up to 5 mol% and thereafter small inppeak

of Dy,O; was observed at 9236 (Fig. 3(a)). This indicates that the Hjons are effectively substituted in the’Ca
site in the host.

The average crystallite sizes of pure andSEa,:Dy* (1 mol%-11 mol%) NPs were determined by both
Scherrer’s relation and Williamson - Hall plots [24

91
_ 0.9 )
J cosf

where /5" denotes the diffracted full width at half maximufBWHM in radian) caused by the crystallite, the
wavelength of X-ray (0.1542 nm)'‘the Bragg angle ankt the constant depending on the grain shape (0T9@) W
— H approach considers the case when the domaiot efhd lattice deformation were both simultangooglerative
and their combined effects give the final line weaing FWHM ), which was the sum of grain size and lattice
distortion. This relation assumes a negligibly dritedtrumental contribution compared with the saenpldependent
broadening. W-H equation may be expressed in time: fo

B cod =¢ 4siﬂ)+% 2

where [ (FWHM in radians) stands for different XRD linesriesponding to different planesthe strain developed
andD the grain size. The W-H plots of §&i0,:Dy>" (1 mol%-11 mol%) NPs are shown in Fig. 3(b). Thupslof the
straight line gives the strairg)(and interceptA(/ D) on theY - axis gives crystallite sizéDj. The other structural
parameters namely dislocation densiygnd stacking fault (SF) were determined usingdhiewing relation:

1
o= F (3
2752
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(4)

The estimated average crystallite size, strairpchsion density and stacking fault for host and:Si@,:Dy** (1
mol%-11 mol%) NPs are tabulated in Table 2. It exdg@dent that, the crystallite size estimated fromM\plots was
slightly higher than those calculated using Schisrfermula. The small variation in the values whee to the fact
that in Scherrer’'s formula strain component wasiaesl to be zero and observed broadening of diffragteak was
considered as a result of reducing grain size only.

Figs. 4(a—f) show the SEM micrographs of8i®,:Dy** (1 mol%-11 mol%) NPs. Irregular shape was observed
for the prepared samples due to uneven distribuifaemperature and mass flow in the combustioméaFurther,
more pores nature was revealed attributed to ghsesscape with high pressure during combustitis fype of
porous network was typical and commonlg observedoimbustion synthesis [25]. Fig. 4(g, h) show t&MTand
HRTEM images of the optimized €3i0,:Dy”* (3 mol%) NPs. From HRTEM image, it can be cleaders that the
lattice fringes with the interplanar spacim) ¢f ~ 0.32 nm corresponds to (302) plane. The mvieskdiffraction spot
in SAED pattern indicates the formation of semistaijline NPs of the samples (Inset Fig. 4(h)).

Diffuse reflectance spectra (DRS) of pure and'y mol%—11 mol%) doped G&iO, NPs recorded in the
range of 200 — 1100 nm at RT are shd«?i@t 5(a2. The sﬁpectra exhibits peaks at ~ 328, 384, 381, 796, 887 and
1071 nm which were attributed $l15,— 11175, ®Hiso— P72, CHisi— Yliajs, SHisiz— Fsjo, CHsio— F7 and®Hs),
OFg + CHypp respectively. The red shifting of bands in the DR&s also observed due to the variation in the
crystallite size and increase of dysprosium ioms ihe host matrix. Fig. 5(b) shows the magnifieswof Dy** peaks
centered at 796 and 887 nm which were attributéd ig,— °Fs, and ®Hisp— °F7)0 respectively.



The Kubelka-Munk (K-M) theory [26] was employed dwaluate the energy band gaps 0§S@,:Dy*" (1
mol%-11 mol%) NPs using DR spectra as shown in 5{g). The Kubelka-Munk functior- (R.) and band gap

energy V) were estimated by utilizing the following equato

(®)

whereR,, represents reflection coefficient of the sampid athe absorption wavelength. The decrease of energy
band gap (5.19 — 5.30 eV) with increase of the dbflay’") concentration was observed and is shown in Figs.5

d). Variation of energy band gap with dopant cotrggion was due to the fact that shallow level donapurities
create energy levels in the band gap near the ctinduband edge and shallow acceptor impuritieaterenergy
levels near the valence band edge. With increagberamount of doping, the density of states ofehdopants
increases and forms a continuum of states as tiabdep decreases [27].

The PL excitation spectrum of €810,:Dy>" (3 mol%) NPs under 574 nm excitation wavelengtrshiswn in
Fig.6 (a). The spectrum consists of a peaks at0; 280, 365, 380, 420 and 455 nm correspondirfifiig,— Py,
®H 15/2Py/2, *His2— P52, *Hiso—l13, "Hisz—*Gi12 and ®Hys—115 transition of DY’ ions. The PL emission
spectra of C#8i04Dy** (1 mol%—11 mol%) NPs under 350 nm excitation wawglle at RT are shown in Fig.6 (b).
The spectra reveal intense peaks at ~ 480, 5786@®thm which were attributed to thiey ,—°H, (J=15/2, 13/2 and
11/2) transitions, respectively [28]. Among thgseaks at ~ 574 nm and 480 nm belong to purelyratatipole (ED)
and magnetic dipole (MD) transitions respectivdlige ED transition was very sensitive to the cry&&dd while MD
transition does not change with the host environragmificantly. The emission intensity was incre@svith increase
of Dy** concentration upto 3 mol% and afterwards decre@@gs (c))due to concentration quenching phenomena.
The critical distanceR,) between the two neighboring activator ions watsmeded using structural parameters
namely unit cell volume\(), Dy** sites per unit cellN) and critical Dy* concentrationX) [29].

R~ ¥ |3
c 4XCT[N

In the present phosphdy, = 4,V = 0.786 nm andX; = 0.03. The estimated value of Was found to be ~ 1.024 nm
and was higher than 0.5 nm. Fig. 6(d) shows ttssipte mechanism for the concentration quenchirenpimena in
CaSiO;Dy*" NPs. It implies that the non-radiative energy sfanwas responsible for energy transfer among Dy
ions due to multipole - multipole interaction. Acdimg to Van Uitert's, the multipolar interactioart be estimated by
utilizing the following relation [30]:

1__ K
VAR (8)

Q

B(x)°
where |/x stand for the emission intensity) per dopant ionx) concentration, an@ stand for the type of interaction
between the dopant ions having values 6, 8 andeffibdstrating exchange interactions, dipole-dipdtel), dipole-
quadrupole (d-g) and quadrupole-quadrupote)dnteractions respectiveli andg are the constants. A logarithmic
plot of (I/X) vs ) was fitted to provided slope ©#3) value to be ~ —1.365 (Fig. 6(e)). The estimatagde ofQ was
found to be ~ 7.28 which was nearest to theoretiahle of 6. This entails that thedlinteractions was responsible
for the concentration quenching.

Considering the energy match rule, the followingssrrelaxation channels (CRC1, CRC2 and CRC3) among

Dy** are responsible for population decreas&gflevel [31]:

Forzt+ *Hisz — "Hod "Frua+ Fsjpmmmmmm-- 9)
“Forzt *Hisiz— *H7l Forp+ OFajp --meme--- (10)
*Forz+ *Hisiz— “Fujzt *Hoizt Fp1j----------- (11)

The excitation energy of BYion present in excited state transferred to neighl ions and promotes the latter from
the ground state to the metastable level. The ions at*Fo, level was de-excited via these three cross-relaxati



processes while the ground state®Dipns will accept the energies from the *Dwt °His, level simultaneously.
Finally, all the DY" ions will go in their ground states and thus tmihescence related B, level was quenched.
The possible energy level diagram of’Dipns in CaSiO, host is shown in Fig. 6(f).

Commission International de I'Eclairage (CIE) 198dy) chromaticity diagram of G&iO,Dy* (1-11
mol%) NPs is depicted in Fig. 7(a). As shown irufig the CIE chromaticity co-ordinates were locatethe white
region. Fig. 7(b) shows the CCT diagram 0£81&,:Dy** (1 mol%—11 mol%) NPs excited under 350 nm. The CCT
was a specification of the color appearance ofigjit emitted by a light source, relating its cotorthe color of light
from a reference source when heated to a partitethaperature. However, lamps with a CCT rating WweB200 K
was usually considered as “warm” light sources,levttiose with a CCT above 4000 K was usually cared as
“cool” in appearance [32]. In the present studg, dverage CCT value of §3i0,:Dy>" (1 mol%—-11 mol%) NPs was
found to be ~ 6151 K which was well acceptable eaoigvertical cool daylight. Thus, the present gitms was quite
useful for artificial production of illumination dees.

Color purity of the sample was calculated usingrétation:

\f‘(xs - T-i)g + (_Vs _yi)z
JCea — )%+ (va — )2

color purity = X100%————— (12)

where, &, Ys) are the co-ordinates of a sample poixy, ¥g) the co-ordinates of the dominant wavelength, @nd:)
the co-ordinates of the illuminant point [33]. Ttheminant wavelength point can be calculated froenitilersection
point of the connecting line between equal energytpand sample point. The color purity of prepaMdés was
found to be in the range of 80% to 85%, which way ¢lose to the standard white light source.

Further, quantum efficiency (QE) of the preparetd@as was estimated by the relations as follows 354

Number of photons emitted  E.- Ej

QE

~ Number of photonsabsorbed L, - L,

where,Ec andE, are integrated luminescence of the phosphor amyeimegrating sphere (blank), respectively,
denotes the integrated excitation profile from éhgpty integrating spherkg is the integrated excitation profile when
the sample was directly excited by the incidentnine@he QE of the prepared samples were estimatedisiad in
Table 3. As can be evidenced from the table, tighdit QE was found to be ~ 82.88 %. Therefore ptiesent
prepared NPs could be a definitive choice as addheminescent NPs for solid state lighting andiagde FED
devices.

The Judd-Ofelt (J-O) theory has been applied teersidnd the environment on the site symmetry akasel
effect of Dy* ions in CaSiO, host. The J-O parameter@,(andQ, ¢ depend on asymmetric nature of the activator
Dy** ligand and long range effects. The detailed procedvas described elsewhere [36]. The relation detw
radiative emission rates and integrated emissitamgities can be expressed by relation [37];

A0—2,4 = I0—2,4 - hUO—l (14)
Ao—l I0—1 hU0-2,4
wherely_; andhvg_; stand for integrated emission intensity and emsrgorresponding to transitiofy,,—°H, Q=
15/2, 13/2 and 11/2) respectively.
The radiative emission ratefo(;) of electric dipole related with J-O parameters wapressed as:

2

Barty,® n(n’+2

o= 200 N2 5 o ot )
3h(23+1) 9 5.

where,e denotes electronic charge, is wavenumber of the corresponding transitibnBlanck's constant amoRI

(Dfut'R)

and (15), the values of2, andQ2,were estimated and are given in Table 3. The rigdiatansition probability Ar),
radiative lifetime §.q) and branching rati(ﬁ(z//J )Were determined by using the relations [38];

2

U(J)

(15)

2

of the sample. shows squared reduced matrix elements &f s [36]. Thus, by using Egs. (14)




A (16)
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Further, the stimulated emission cross-sectigiwas also evaluated by the following equation;
/14
o.(A)=| —F— | A,.
e( P) {ST[anMeﬁ :| J=J
------- (19)

where ip is the emission peak wavelength correspondingsitians, ¢ the velocity of light, Ales the effective
bandwidth of the emission transition, amthe refractive index of the host lattice.

The calculated values of radiative properties abeilated in Table 3. The variation @ values with Dy*
concentration indicates the high sensitivity to ligand environment. Th®, andQ, parameters are mainly ascribed
to short range and long range effect due to coegland structural deviations in the environmenthaf Dy’ ions.
Further, the measured branching ratio was fourtgete 0.99> 0.50 which endorses that the prepared NPs can emit
pure white light emission which can be effectiveed in solid state lightning applications.

Generally, FP types have been described into tmaaps: (i) level 1 features were described bydipgnt
ridge flow and general morphological informatioii), level 2 features provide pattern matching falem detection of
individual fingerprint ridges, (iii) level 3 feates are defined as all attributes of a ridge, indgidhape, width, pores
and curvature [39-41]. In order to inspect theahility of optimized CaSiOs:Dy>* (3 mol%) NPs for visualization of
LFPs, series of attempts have been made to visuabmplex LFPs of the same donor on various nonysor
substrates namely aluminum foil, glass, marble wodden surfaces under normal light. Well definethei details
enabling complete level 1, 2 and 3 details of FBs abserved (Fig.8) due to nano regime and bettersive nature
of the optimized sample. Further, complex LFP amahium foil was visualized by staining optimizezhsple under
normal light by smooth brushing. Visualized LFPa caveal defined ridge characteristics includinmpticated level
3 sweat pores with high sensitivity and less bamligd hindrance. Fig. 9 shows the LFPs visualizeccamed
surfaces, namely, soft drink cans, spray bottletaadylass cup under normal light. The detailedeaidharacteristics
including level 1-3 were clearly revealed withoaickground hindrance. Further, the LFP visualizedaloiminium
surface under normal light exhibits various ridgmracteristics, such as, ridge bifurcation, tertidma dot, small
ridge, island, ridge end, whorl, lake, and sweaepavere clearly distinguished (Fig.10).

Further, in order to know the selectivity of opitbed sample, a series of controlled experimentsewer
performed by using commercially available®gand TiQ powders and are shown in Fig.11. Based on thesradat
results, one can observe that LFPs visualized &ggred sample exhibit detailed ridge charactesigticluding levels
1 - 3 as compared to conventional ones. Table #slibe comparison of various parameters namelyhodebf
synthesis, FP development techniques, excitatioveleagth, type of surfaces, efficiency and toxiaitfy various
powders with Cz5i0,:Dy** NPs [42-51]. Therefore, it was authorized that pnobability for the recognition of the
foremost ridge details (even sweat pores) of LFRsvarious surfaces was well established by optithize
CaSiOsDy*" (3 mol%) NPs. Therefore, aforementioned resulsplely the possible usage of S&,:Dy>* NPs
fabricated via combustion synthesis route for adedrForensic applications.



4. Conclusions

In summary, the G8iO,:Dy* (1 mol%—11 mol%) NPs were fabricated successfullpdiution combustion method
using ODH as fuel. The followed preparation methad several benefits such as low cost, energyieitig, high
production volume, simple method and high purityref product. The crystallite size was estimatethérange 30—
40 nm respectively. From SEM studies, the partielpgear to be non-uniform and agglomerates are aseapof
circular with several micrometers in size. The cgitband gaps for DY doped NPs were estimated to be in the range
5.19-5.30 eV. The obtained photometric results wmrepar with commercial white light with high pwyritThe
optimized product was successfully explored a<ciefiit labeling agent for visualizing LFPs on vasdosurfaces
including glass, aluminum foil, wooden surface difterent color background papers under normaltlighwing to
nano regime and good adherence efficiency, LFPsg wisualized with high sensitivity, low backgrouhohdrance,
high efficiency, and low toxicity. Further, for tfiest time well defined level 3 ridge details unes@rmal light can be
explored by simple powder dusting method. Thereftiie obtained NPs can be a definitive choice asrazkd
luminescent NPs for multifunctional applications.
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Research Highlights

Novel CaSiO,:Dy*" NPs were prepared by solution combustion route.

LFPs visualized using optimized NBsnore effective with better resolution, detaifedjerprint ridges,
easy fluorescence capture, and less backgrourndeirgece.

Level 1-3 ridge details were effectively visualiaggsing optimized fluorescent labeling agent.

The optimized product was used for forensic anid stéte lightning applications.



Ca(NO,), + Fumed Pre-heated muffle
silica+ Dy(NO,), + furnace (450 'C)
CHN,O

2776 472

Final product

Advanced forensic
investigation

Fig.1. Schematic illustration for the synthesi<CagSiO,:Dy** (1 mol%—11 mol%) NPs by solution combustion route.



Fig.2. Schematic illustration for the visualizatiohLFPs by staining G&8iO,:Dy>* (3 mol%) NPs by powder dusting
method.
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Fig.3 PXRD patterns (a) and W-H plots (b) of punel ®y** (1 mol%—11 mol%) doped G3iO, NPs.
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Fig.4 SEM micrographs of G&iO,:Dy*" (1 mol%—11 mol%) NPs (a-f), TEM (g), HRTEM (h) inesgof
CaSiO;Dy** (3 mol%) NPs (Inset: SAED pattern).
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Fig.5 DR spectra (a), magnified view of 796 and 887 peaks (b), energy band gap plot (c) and variati energy
gap values with DY concentrations (d).
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Fig.8. Pre - processed overlapped LFPs visualigestdining Cz_;SiOA,:Dy3+ (3 mol%) NPs on aluminum foil (a),
glass (b), marble (c), wood surfaces (d) and pastgssed images (e—h).



LFPs visualized on curved surfaces
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Fig.9 LFPs visualized under normal light on varicusved surfaces (a-e) and enlarged images'fa
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Fig.10. Well defined ridge details (Type 1-3) okdapped LFP visualized by staining,S#,:Dy>* (3 mol%) NPs.



Fig.11. Comparison between the visualized LFPsiathby commercial FP powders: (a) white powder;T{B); (c)
Fe0s; (d) CaSiO.zDy** (3 mol%) NPs.

Table 1: Bandey's FP grading scheme.



Grade Description

0 No description
1 No continuous ridges; all discontinuous or dotty
2 One third of the mark comprised of continuous @sigemainder either show no

development or dotty

3 Two thirds of the mark comprised of continuougyed; remainder either show no
development or dotty

4 Full development; whole mark comprised of continsiadges

Table 2. Estimated crystallite size, micro-strdmttice strain, dislocation density and stackingltfaof pure and
CaSiOsDy*" (1 mol%-—11 mol%) NPs.

Ca,Si0,: DYy*"  Average crystallite size&/nm Micro-strain  Lattice strair Dislocation density Stacking

(mol%) Scherrer W-H 80‘3 e (x107) (x10"lin/m?) fault
method plots (x107)

pure 40 43 1.01 2.2¢4 6.21 0.41
1 38 40 1.11 3.1¢ 9.7¢ 0.4¢

3 37 39 1.0¢ 3.2¢ 9.8¢ 0.47

5 35 36 1.1z 3.47 10.17 0.4¢

7 33 33 1.1F 3.8¢ 10.7¢ 0.5:

9 30 31 1.11 4.2¢ 10.9¢ 0.5¢
11 28 30 1.0 4.8z 11.2¢ 0.5¢




Table 3: J-O intensity parameter@,(& ,), Emission peak wavelengthg), radiative transition probabilityAf),
radiative lifetime .q), branching ratiofg), stimulated emission cross-section and quantticiexicy of
CaSiOxDy*" (1 mol%-—11 mol%) NPs

C&Si0;Dy*"  J-O parameters<{ 0% cnr) p Ar Taa  Pr o(lp) n (%)

conc. (mol%) 2 2 (nm) (sh (ms) (x10%%cmd)
1 5.9¢ 6.5¢€ 574 287.¢ 3.4&8  0.99¢ 17.2¢ 70.6¢
3 6.3( 6.51 574 303.¢ 3.2¢  0.99¢ 26.3¢ 82.8¢
5 6.47 5.9t 574 312.(C 3.2C 0.99¢ 32.3¢ 76.6(
7 7.04 10.51] 57t 339.¢ 2,94  0.99¢ 32.7¢ 73.6¢
9 7.0¢ 10.3¢ 57¢ 338.¢ 2,95 0.99¢ 34.3: 78.6¢
11 6.4z 10.4¢ 574 356.z 2.8¢ 0.99¢ 34.8¢ 70.4:z

Table 4:Comparison of method of synthesis, FP techniqueitaion wavelength, type of surfaces, efficienoyda
toxicity of various powders with G&iOy: Dy3+ NPs.

Sl. Material Synthesis Fingerprint Excitation Type of surfaces Efficiency  Toxicity Ref
No method technique wavelength = (levels of
orous  Non-porous d X
etection)
1.  YAIOgSnt SC PD 365 nm Freshly  Aluminum Levell &1l Low- Darshan et al.
cut leaf foil, glass, toxic [46]
transparent
plastic sheet,
stainless stee
2. PR254@SiG@ Stober, PD 254 nm - Polystyrene, Levell, Il & Non- Kim et al. [43]
PVPs allylation glass 1] toxic
and
hydrosilyla-
tion
3. C-Sio, carbogenic PD 350, 395, — Glass and Level I, Il & Non- Fernandes et al,
590 nn polymer 11 toxic [47]
4, Poly Modified Sl Normal - Adhesive Level Il Low- Chen et al, [48]
(p-phenylene  Wessling light and tapes, toxic
vinylene) 365 nm aluminum foil,
(PPV) cover glass
nanoparticles
5. C-dot/silica carbogenic PD 350, 380, Softdrink Glass slide, Levell& Il Non- Fernandes et al,
NPs 410, 440, Dottle foil toxic [49]
470 nm
6. SiO,@SrTiG: Stoberand PD 254 nm Currency, Marble, metal Levell, Il & Non- Sandhyarani et
Eu® L™ combustion paper foil, marker, Il toxic al, [50]
cup, remote,
magazine spatula, coin
covel etc
7. SiO,@Y,03: Stober and PD 254 nm Currency, Scissor, Level I, Il & Low- Venkatachalaiah
EU, M* combustion paper marble, coin, Il toxic et al, [51]
(M* = Li, Na, cup, CD, pellet die
K) magazine set etc.
cover,
credit
card:
8. Mg,SiO;:RE¥*  SC PD 254 nm - Aluminum Level | &Il Non- Ramachandra et
(RE = Eu, Th) foil, remote, toxic al, [52]
stapler
9. CdSiQ:Dy3+ SCS PD Normal Magazine Marble, coin, Levell &Il Non- Basavaraj et al,
lightand cover, CD, aluminum toxic [53]
254 nm news foil
paper
10. CdSiGO: SCS PD 254 nm Magazine Marble, CD, Levell &Il Non- Basavaraj et al,
T EU* cover, aluminum foil, toxic [54]
plastic spatula, remote
cover, mobile etc.




currency

note
11. BaTiO;:Dy** SCS PD Normal - Marble, pen, Level &Il Non- Dhanalakshmi
light remote, coin toxic et al, [55]
etc.
12. CaSiozDy** SC PD Normal - Foil, glass, Level I, Il & Non- Present study
light marble and Il ridge toxic
wood details
visualized in
individual
and
overlapped
FPs

SC: Solution combustiorSCS: sonochemical synthesBD: Powder dustingSl: Solution immersion
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