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Abstract 
In the present communication, various fluxes blended Y2O3:Eu3+ (5 mol%) nanopowders (NPs) 
were successfully fabricated by solution combustion method. PXRD pattern confirms body-
centered cubic structure of the prepared samples. Energy band gap (Eg) of the fabricated products 
was estimated and is found to be in the range of 3.13–3.32 eV. Photoluminescence (PL) emission 
spectra exhibit sharp and intense peaks at ~ 579, 592, 614, 657, 704 nm corresponds to 5D0 → 7FJ 
(J = 0, 1, 2, 3 and 4) transitions of Eu3+ ions. Significance of fluxes for enhancing the PL 
emissions is extensively studied. Photometric studies of the prepared samples are located in pure 
red region. Optimized NPs were explored as a novel sensing agent for visualization of latent 
fingerprints (LFPs) on various surfaces including porous, semi-porous and non-porous surfaces 
followed by powder dusting technique. Various experiments including aging, temperature, 
scratching and aquatic fresh water treatment tests were performed to evaluate applicability of the 
fabricated NPs. Visualized LFPs exhibit well defined ridge details including most authenticated 
sweat pores are also revealed with high sensitivity, selectivity, little background hindrance and 
less toxicity. Aforementioned results evidence that the method and fabricated NPs can be 
considered to be simple, rapid and economical and provide novel sensing platform for LFPs 
visualization in prospective forensic applications.     
Keywords: Fluxes; Photoluminescence; Latent Fingerprint; Sweat pores; Forensic applications; 

Rare earths 
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1. Introduction 
Fingerprints have been extensively researched because they have unique shapes (whorl, arch and 
loop) and do not vary with ages. The fingerprints have several minutiae such as ridge flow (level 
1), core, delta, bifurcation (level 2) and sweat pore (level 3) which are different for each 
individual. Therefore, fingerprints have been used as the effective trace which is an important 
evidence for identifying individual information and crime scenes [1–4]. However, latent 
fingerprints are required to develop the visualization techniques because they are invisible or 
barely visible to naked eyes. One of the methods for detecting the latent fingerprints is powder 
dusting method containing two major powder types such as metal and magnetic powders. They 
are effective in the development of latent fingerprints except for some problems. Firstly, they 
have the low contrast due to the non-fluorescence of the powders. Secondly, they have the low 
resolution due to their resinous polymer (starch, rosin, etc.) and colorant components. Lastly, 
they are harmful for user health due to their components. To settle the problems, the 
development of luminescent materials is demanded for replacing the metal and magnetic 
powders [5–8]. 

Recently, the application of nanopowders (NPs) has been extended to the accurate 
identification of latent fingerprint technology.  This is because NPs are extremely small, 
generally 1000–10000 times smaller than a fingerprint ridge width, which ensures the excellent 
resolution upon detection [9]. The fingerprint constitutes one of the regular and powerful 
techniques for recognizing people since the ridge and furrow patterns of each print are unique 
and immutable [10, 11]. There are three different types of fingerprint powders: regular, metallic 
and luminescent. Regular fingerprint powder consists of a resinous polymer and a colorant. It is 
impotent to develop latent fingerprint (LFP) on challenging surfaces. Use of metallic compounds 
is harmful for user health because of metallic powder containing meshed metals with lead, gold 
and silver. Although the use of fluorescent nanomaterials, including quantum dots, carbon dots, 
and up conversion nanoparticles, for improving the detection limit of LFPs has been attempted, 
there are still concerns regarding their low detection efficiency, complicated process involved, 
photo bleaching, and toxicity. The visualization was restricted only level 1 and level 2 ridge 
characteristics due to poor fluorescent image qualities with these nanomaterials [6, 12–14]. 
Hence, luminescent NPs are highly required to visualize LFPs with superior sensitivity, little 
background hindrance, extraordinary efficiency, lesser toxicity and stress-free detection. As can 
be seen from Table 1, there is a lack of studies on aging, effect of temperature, abrasion and 
preservation of LFPs under aquatic conditions [6, 12, 15–20].  

In the recent years,the combination of RE3+ ions with flux (chloride salts) emerged as a 
successful way to improve the PL intensity and efficiency of the phosphors [21, 22]. Fluxes play 
a significant role in the crystal growth and enhance the efficiency of luminescence intensity. The 
enhanced luminescence can be due to the local crystal field symmetry breaking around rare-earth 
ions [23, 24]. The addition of flux has a great influence on the ion diffusions in the solid-state 
reaction, particle size distribution, growth condition, crystallization process as well as the 
formation of target product matrix with good crystallinity [25].  

Yttrium oxide (Y2O3) is a phosphor material which showed applications in fields viz 
white LED phosphors [26], commercial lighting, up-conversion materials [27, 28], transparent 
ceramics [29], fluorescence sensors, etc.  It is an excellent host matrix for rare earth ions due to 
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its unique properties such as broad transparency range (0.8–2.0 mm; large band gap 5.8 eV), 
high refractive index (>1.9) [30].  Addition of different rare earth ions into Y2O3 nanostructures 
helps in further enhancing its emission efficiency [31].  Eu(III) acts as a red color activator, the 
combination of (Y2O3:Eu) leads to red emitting material with commercial applications and  
minimal degradation under applied voltages, Y2O3 nanostructures have been the focus of 
extensive research [32–35]. 

The present work deals with novel Y2O3:Eu3+ (5 mol%) blended with various fluxes  
(KCl, NH4Cl, NaF and NH4F) prepared by solution combustion method. The prepared samples 
were characterized by powder X–ray diffraction (PXRD), diffuse reflectance spectra (DRS), 
Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), Raman and photoluminescence studies. The optimized NPs have 
been extensively utilized for visualization of LFPs on various porous, semi-porous and non-
porous surfaces.   
2. Experimental and characterization 
2.1 Chemicals 
Analar grade of yttrium (III) nitrate hexahydrate: Y(NO3)3·6H2O (Sigma Aldrich, 99%), 
europium (III) nitrate pentahydrate: Eu(NO3)3·5H2O (Sigma Aldrich, 99%), urea: NH2CONH2 
(Sigma Aldrich, 99%); potassium chloride: KCl (Sigma Aldrich, ≥ 99%); ammonium chloride: 
NH4Cl (Sigma Aldrich, ≥ 99.5%); sodium fluoride: NaF (Sigma Aldrich, ≥ 99.5%); ammonium 
fluoride: NH4F (Sigma Aldrich, ≥ 99.5%) and double distilled water. 
2.2 Synthesis of flux blended Y2O3:Eu3+ NPs 
3.83 g of yttrium nitrate, 0.0428 g of europium nitrate and 0.6 g of urea were taken in a 350 mL 
Pyrex dish, dissolved in double distilled water and mixed homogeneously using magnetic stirrer 
for ~ 20–30 min. Then the resultant precursor solution was introduced into preheated muffle 
furnace maintained at 450 ± 10 oC. Within ~ 15–20 min the solution underwent self-ignition and 
metal nitrates decomposed with smoldering. The resulting powder was crushed and calcined at 
~700 oC for ~ 3 h. Similar procedure was repeated using various fluxes KCl, NH4Cl, NaF and 
NH4F (1 wt%).  Finally obtained NPs were used for further characterizations. 

2.3 Visualization of LFPs using optimized Y2O3:Eu3+ (5 mol%):NH4F (1 wt%)  NPs 
Various non-porous surfaces used in the present study were thoroughly cleaned by alcohol to 
ensure no unintended LFPs was deposited. After that the cleaned fingers of the donar were 
pressed against various surfaces including porous, semi-porous and non-porous surfaces by 
smooth rolling. The bare LFPs were treated with fresh water aquatic condition with various 
aging and later stained by the optimized Y2O3:Eu3+ (5 mol%):NH4F (1 wt%)NPs by a soft 
feather brush with light brushing action. To evaluate LFPs development technique the physical 
scratch test is carried out by sealing adhesive tape on tothe developed FPs and then peeling off 
from the surface. In addition, effect of temperature (30, 35, 40, 50 oC) was also performed on 
LFPs stored for ~ 10 min. Finally, the developed LFPs were photographed in situ using a 50 mm 
f/2.8 G, ED lens Nikon D3100/AF-S digital camera under normal and 254 nm UV lamp. 
2.4 Characterization 
The Philips powder X-ray diffractometer (Shimadzu-7000) with Ni filtered Cu Kα radiation was 
used to study the powder X-ray diffraction (XRD) studies. The Perkin Elmer (Spectrum 
RXIFTIR) spectrometer was used to carry out FTIR studies. Morphological (SEM and TEM) 
analysis were carried out by a Hitachi 3000 table top scanning electron microscope and a Hitachi 
H-8100 accelerating voltage up to 200 KV, LaB6 filament equipped with EDS (Kevex sigma TM 
Quasar, USA). The Jobin Yvon Horiba LABRAM-HR-Visible micro Raman system was used 
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for Raman studies with He-Ne laser (~ 632.8 nm) as the source. Diffuse reflectance (DR) spectra 
of all the prepared NPs were recorded by PerkinElmer (Lambda-35) spectrophotometer. PL 
studies were performed by a Horiba (JobinYuvon) spectrometer having slit width of 5 nm. 
3. Results and discussion 
PXRD profiles of Y2O3:Eu3+ (5 mol%) and Y2O3:Eu3+ (5 mol%), M (M=KCl, NaF, NH4Cl and 
NH4F (1 wt%)) NPs, are shown in Fig.S1 (a).Detailed discussion about the crystallite property 
was discussed in the supplementary section. The average crystallite sizes of prepared Y2O3:Eu3+ 
(5 mol%) and Y2O3:Eu3+ (5 mol%), M (M=KCl, NaF, NH4Cl and NH4F (1 wt%)) NPs were 
estimated and found to be 45, 38, 43, 52, 47 and 56 nm, respectively.  

Fig. 1 depicts the morphologies of Y2O3:Eu3+ (5 mol%) KCl, NaF, NH4Cl and NH4F (1 
wt%) blended Y2O3:Eu3+ NPs. Irregular shaped particles with large pores were observed in 
Y2O3:Eu3+ (5 mol%) NPs (Fig.1(a)). However, KCl and NH4Cl blended Y2O3:Eu3+ (5 mol%) 
NPs exhibit sponge-like structures with large voids. Whereas NaF blended samples exhibit 
irregular shaped particles without any porosity. Spherical shaped particles with smooth surface 
were observed in NH4F blended Y2O3:Eu3+ (5 mol%) NPs (Fig. 1(e)). These results clearly 
evidence that the fluoride fluxes in particular NH4F facilitate to fabricate well defined shaped 
particles with high purity and good chemical homogeneity owing to rapid evaporation or 
decomposition properties of NH4F flux that lead to fast nucleation. 

TEM images of Y2O3:Eu3+ (5 mol%) and Y2O3:Eu3+ (5 mol%), M (M=KCl, NaF, NH4Cl 
and NH4F (1 wt%)) NPs are as shown in Fig. 2(a–e). Well defined spherical shaped Y2O3:Eu3+ (5 
mol%), NH4F (1 wt%) NPs are also evidenced in TEM results (Fig. 2(e)). The HRTEM image 
and SAED patterns of Y2O3:Eu3+ (5 mol%), NH4F (1 wt%) NPs are shown in Fig.2 (f, g). The 
inter-planar distance ‘d’ between the planes corresponding to (222) plane is found to be ~ 0.24 
nm. The SAED pattern confirms the crystalline nature and circles are matched with the (hkl) 
planes of the PXRD results. 

Fig. 3(a) shows DR spectra (DRS) of Y2O3:Eu3+ (5 mol%) NPs with and without the use 
fluxes. The spectra exhibit characteristic absorption peaks at 393, 464 and 557 nm attributed to 
7F0→

5L6, 
5D2 and 5D1 transitions of Eu3+ ions, respectively[36]. Further, Kubelka-Munk relation 

was used to estimate energy band gap (Eg) of the prepared samples by analyze the DR spectra as 
follows:  
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where R∞ is reflection coefficient of the sample, λ the absorption wavelength, and h Planck’s 
constant. From the plots of ( ) 1/2

F R hν∞   versus photon energy (Fig. 3(b)), the Eg values of 

prepared Y2O3:Eu3+ (5 mol%), Y2O3:Eu3+ (5 mol%), M (M=KCl, NaF, NH4Cl and NH4F (1 
wt%)) NPs were estimated and found to be ~ 3.32, 3.27, 3.16, 3.13 and 3.30 eV respectively. The 
variation in the Eg values is mainly due to creation of sub-structure with co-doping which may 
lead to oxygen vacancies.  

FTIR spectra of Y2O3:Eu3+ (5 mol%) and Y2O3:Eu3+ (5 mol%), M (M=KCl, NaF, NH4Cl 
and NH4F (1 wt%)) NPs were recorded and the results are shown in Fig. 3(c). The strong 
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absorption peak centered at ~ 568 cm–1 is owing to Y–O lattice vibration. The peaks at ~ 863  
and 1075, 1403, 1563 cm–1 were due to C–O bond bending and stretching vibration, respectively. 
The observed peaks are due to carbon contents or CO2 absorption from the ambient atmosphere. 
The broad absorption band at ~ 3542 cm–1 corresponds to O-H stretching vibrations[37]. 

Fig. 3(d) displays Raman spectra of Y2O3:Eu3+ (5 mol%) NPs prepared with and without 
fluxes. The spectra exhibit several peaks recorded at ~ 132, 164, 195, 318, 333, 378, 468, 603, 
705 and 741 cm–1. The intense peaks centered at ~ 378 and 705 cm–1 are associated to 
characteristic of cubic structure and dopant Eu3+ ions Y2O3 host matrix. The existence of these 
peaks in NPs with and without fluxes indicates that the cubic phase has been retained on doping. 
The intensity of these peaks related to with flux is found to be enhanced[38]. 

Fig. 4(a) shows the PL excitation spectra of Y2O3:Eu3+ (5 mol%) and Y2O3:Eu3+ (5 
mol%), M (M=KCl, NaF, NH4Cl and NH4F (1 wt%)) NPs under 612 nm emission wavelength. 
The excitation spectra of the prepared samples exhibit broad intense peak at ultraviolet region 
(225–300 min) owing to O2– to Eu3+ charge transfer band (CTB) attributed to the electronic 
transition from the 2p orbital of O2– to the empty 4f orbital of Eu3+ ions. The zero phonon line 
spectra are shown in Fig. 4(b). The existence of CTB specifies covalent nature of Eu–O bond. 
The remaining peaks observed in the spectra are mainly attributed to f-f transitions of Eu3+ 
activator. PL emission spectra of Y2O3:Eu3+ (5 mol%) and Y2O3:Eu3+ (5 mol%), M (M=KCl, 
NaF, NH4Cl and NH4F (1 wt%)) NPs excited at 396 nm wavelength are shown in Fig. 4(c). The 
spectra exhibit sharp and intense peaks at ~ 579, 592, 614, 657, 704 nm wavelengths 
corresponding to 5D0 →

7FJ (J = 0, 1, 2, 3 and 4) transitions of Eu3+ ions. The 5D0 →
7F1 and 5D0 

→
7F2 transitions are due to magnetic and electric dipole (MD and ED) transitions of Eu3+ ions, 

respectively[39]. Moreover, MD transition may not depend on host lattice symmetry, while 
hypersensitive ED transition mainly depends on the host lattice. In our present work, ED 
transition (614 nm) is predominant as compared to MD transition (592 nm) due to the effective 
substitution of Eu3+ ions in Y2O3 sites without inversion center and lower symmetry of the 
crystal field.  

Asymmetry ratio (A21) between the peaks at ~ 614 and 592 nm was estimated by the area 
under the peaks, as follows [40]: 

620

2

605
21 600

1

580

d

d

A

A

A

λ

λ
=
∫

∫
-------- (4)

 

where, subscript “1” and “2” denote transitions of 5D0 →
7F1 and 5D0 →

7F2, respectively. The 
maximum value of A21 is observed in Y2O3:Eu3+ (5 mol%), NH4F (1 wt%) NPs, which suggest 
an enhancement in red color. The variation of PL intensity with fluoride fluxes was investigated 
in detail, as shown in Fig.4 (d).The enhanced PL intensity (approximately 3-fold) is observed for 
Y2O3:Eu3+ (5 mol%), NH4F (1 wt%) NPs, which may due to crystal field splitting and crystal 
symmetry distortion (Fig.4 (d)). 
 The chromaticity co-ordinates of the prepared samples were estimated as per regulations 
of the Commission Internationale de I ‘Eclairage (CIE)[41]. The CIE chromaticity diagram of 
prepared samples are shown in Fig. 4(e). From the figure, it is evident that the CIE co-ordinates 
are located in the pure red region. Correlated color temperature (CCT) can be estimated by 
Planckian locus, which is only a small portion of the (x, y) chromaticity diagram and there exist 
many operating points outside the Planckian locus. If the co ordinates of a light source do not fall 
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on the Planckian locus, the CCT was used to define the color temperature of a light source. CCT 
is calculated by transforming the (x, y) coordinates of the light source to (u0, v0) by using the 
equations.  
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x
u -------- (5) 

3122
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++−
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yx

y
v ---------- (6) 

33.55203.68233525449),( 23 +−+−= nnnyxCCT ---------- (7) 
where, n = (x – 0.3320)/(y – 0.1858). By determining the temperature of the closest point of the 
Planckian locus to the light source on the (u0, v0) uniform chromaticity diagram is shown in Fig. 
4(f). The lamps with a CCT value below 3200 K are usually considered as “warm” light sources, 
while those with a CCT above 4000 K are considered as “cool” in appearance [42]. The 
estimated CCT values of the prepared samples were located in range between ~ 2000 – 3000 K 
(Fig. 4(f)). In addition, color purity of the optimized sample is calculated using the following 
formula[43]: 

( ) ( )
( ) ( )

2 2

s i s i

2
2

d i d i

color purity 100%
x x y y

x x y y

− + −
= ×

− + −  --------------- (8) 
where ( sx , sy ) and ( dx , dy ) are the coordinates of a sample point and dominant wavelength 

respectively and (ix , iy ) are the coordinates of the illuminate point. The color purity of the 

optimized samples was calculated and found to be ~ 88%. 
In order to explore the effectiveness of the prepared samples, the LFPs are visualized by 

staining Y2O3:Eu3+ (5 mol%) NPs prepared with and without fluxes on glass and aluminium foil 
surface under 254 nm UV light (Figs. 5 & 6). From the figures, it is clear that a high quality well 
defined ridge details (level I – III) are visualized after stained by NH4F assisted Y2O3:Eu3+ (5 
mol%) NPs as compared to the other samples. It evidenced that the optimized Y2O3:Eu3+ (5 
mol%), NH4F  NPs is explored as a labeling marker for further studies. In addition, the 
selectivity of the optimized sample for visualization of LFPs, conventionally used Fe2O3 and 
TiO2 staining powders were used as control. It is evident that Fe2O3 and TiO2 powders could not 
be able to visualize LFPs on aluminium foil (Fig.7). However, LFPs visualized by staining 
optimized sample clearly revealed friction ridges with well defined sharp edges under both 
normal and UV 254 nm light. The obtained results also reveal optimized Y2O3:Eu3+ (5 mol%), 
NH4F NPs can be used as an efficient labeling agent for identification of individuals due to their 
enhanced luminosity and nano-regime (Fig.7). 

Further, a series of experiments were performed for evaluation of the optimized NPs for 
visualization of LFPs on non-porous surfaces such as spatula, highlighter, glass, coin, compact 
disc and goggle under normal and UV 254 nm light. Fig.S2, Fig.S3 and their explanation in the 
supplementary section give the effectiveness of this method on various surfaces and the 
visualization of level III ridges. Generally, the porous surfaces, namely paper, cardboard and 
wood, are rapid absorptive of LFPs residues after deposition. Water-soluble chemical 
constituents of LFPs such as amino acids, urea and chlorides are absorbed within few seconds 
and as water evaporates constituents are stay on the surface for longer period. To boost practical 
advantages of the optimized samples, LFPs were developed on complicated and high color 
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background porous playing cards and crushed aluminium foil surface under UV 254 nm light 
(Fig.8). The visualized FPs exhibits well defined ridge characteristics without background 
hindrance, indicating the sensitivity of the prepared sample for effective identification of 
individuals during crime spot investigation. 

Further, the semi-porous surface lies in between the porous and non-porous surfaces. We 
encountered most neglected semi-porous surfaces such as various fruits and vegetables namely, 
brinjal, capsicum, cucumber, green apple, watermelon and papaya visualized under normal and 
254 nm UV (Fig.S4).The details of ridge observations were discussed in the supplementary 
section.Generally conditions which affect the visualization of LFPs include nature of surface, 
time elapsed since deposition, environmental factors (air circulation, dust, humidity, light 
exposure, precipitation, temperature, ultraviolet rays) enhancement techniques, etc. Further, 
chemical constituents of LFPs considerably change due to surface reactions, diverse 
decomposition, and oxidative mechanisms. In general, the LFPs compositions can be classified 
as: (i) the initial composition, at deposition chemical constituents present in fingertip is 
transferred to the surface and (ii) the aged composition, containing the existing initial 
constituents and degradation products [44, 45]. A little research has been required to identify the 
changes between the initial and aged compositions and rate of change with time. Hence, a series 
of aging tests have been performed on various surfaces including glass slide and cup, highlighter, 
compact disc, aluminium foil and playing card under UV 254 nm light. As shown in Fig. 9, the 
visualization sensitivity gradually decreased with prolonged aging of the FPs. In addition, LFPs 
aged upto 30 d could also visualize with well defined ridge edges, signifies the sensitivity of the 
prepared sample.LFPs on glass surface stored at different temperatures stained by optimized NPs 
were discussed in the supplementary section.In addition, aquatic tests were also carried out by 
treating bare LFPs with fresh water upto 7 d. The results evidence that the duration of 
submersion in fresh water would not affect FPs quality for even longer duration (7 d) (Fig. 10). 
This could be of practical importance during examination of such evidences.Further, a series of 
physical scratch tests were performed on various surfaces and we investigated the effect of 
external abrasions which can destroy LFPs as discussed in the supplementary section (Fig.S6). 
 
4. Conclusions 
 
In summary, Y2O3:Eu3+ (5 mol%) NPs prepared using various fluxes show enhanced PL 
emission compared to without fluxes. Nano regime was confirmed by TEM and PXRD 
characterization results.  NH4F flux blended NPs show the highest PL intensity among the used 
fluxes.  These samples can be used effectively as a novel colorimetric sensing assay for the 
visualization of LFPs on various complicated and neglected surfaces. The calculated CIE 
coordinates for the optimized samples are found to be (0.65, 0.35) under NUV excitation, which 
are close to the coordinates of NTSC standard for red color. The visualized LFPs exhibits high 
efficiency and high sensitivity due to rapid development procedure and without any background 
interference. The duration of submersion in fresh water would not affect LFPs quality even for 
longer duration. The scratched LFPs also exhibit clear and well defined ridge details. The 
prepared NPs can be a potential candidate for WLED and forensic applications.  
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Figures 
 

 
Fig.1. SEM micrographs of Y2O3:Eu3+ (5 mol%) NPs without and with fluxes. 

 
 
 
 
 

 
Fig.2 (a-e) TEM images of Y2O3:Eu3+ (5 mol%) NPs without and with fluxes; (f) HRTEM and 

(g) SAED patterns of Y2O3:Eu3+ (5 mol%), NH4Cl (1 wt%) NPs. 
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Fig.3 (a) DR spectra, (b) energy band gap plots, (c) FTIR spectra and (d) Raman spectra of 

Y2O3:Eu3+ (5 mol%) NPs without and with fluxes. 
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Fig.4 (a) Excitation spectra, (b) zero phonon spectrum, (c) emission spectra of Y2O3:Eu3+ (5 

mol%) with and without various fluxes, (d) PL intensity and asymmetric ratio versus 
various fluxes and (e, f) CIE and CCT diagrams of Y2O3:Eu3+ (5 mol%) without and 
with different fluxes. 
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 Fig.5. LFPs developed on the glass surface stained by optimized Y2O3:Eu3+ (5 mol%) NPs with 
and without various fluxes. 

 

Fig.6. LFPs visualized on aluminium foil surface by using optimized Y2O3:Eu3+ (5 mol%) NPs 
without and with various fluxes. 
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Fig.7. LFPs visualized by commercial powders including Fe2O3, TiO2 and optimized NPs. 

 

 

 

Fig.8. Visualized LFPs by using optimized NPs on various porous surfaces under UV 254 nm 
light.  
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Fig.9. Aged LFPs recovery on non-porous and porous surfaces stained by optimized NPs under 
UV 254 nm light followed by powder dusting technique. 
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Fig.10. LFPs recovery using optimized NPs on the various non-porous surfaces treated with 
fresh water. 
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Table.1. Comparison of FP results obtained in the present study with those of reported data. 

Host Method of 
Synthesis 

Types of surfaces used 
for detection 

FP detection FP 
aging 

Effect of 
temperature 

Abrasion 
test 

Aquatic 
treatment 

NaYF4:Yb,Er Solvothermal 
(180 °C/24 h) 

Ceramic tile, marble, 
glass  
(non-porous) 
note papers, Chinese 
paper money, and plastic 
plates (porous) 

Type I and II - - - - 

Y4Zr3O12:Eu3+ Solvothermal 
(1000 oC/5 h) 

Aluminum foil, plastic 
tube (porous)  
glass, compact disk, 
stainless steel (non-
porous) 

Type I and II - - - - 

YVO4:Eu, 
LaPO4:Ce,Tb 

Hydrothermal 
(180 oC/24 h) 

Plastic cards, aluminum 
alloys sheets, printing 
papers (porous)  
ceramic tiles, marbles, 
painted wood, and floor 
(non-porous) 

Type I and II - - - - 

Fluorescent 
SiO2 NPs 

Stöber method Glass (non-porous) Type I and II - - - - 

(PPV) NPs Modified 
Wessling  
(80 °C / 3h) 

Adhesive tape (porous) Type I and II - - - - 

Fluorescent 
semiconducting 
polymer dots 

Suzuki 
coupling 
reaction 
(100 °C /48 h) 

Printing paper and 
colored paper 
(porous) 
glass, aluminum foil, 
plastic bag, and acrylic 
sheet 
(non-porous) 

Type I, II and 
III 

- - - - 

AuNCs@MMT One-pot 
microwave 
35 °C under 
vacuum 
condition 

Weighing paper,  
adhesive 
tape (porous) 
binder clips, slide glass, 
transparent  
tweezers and porcelain 
enamel (non-porous) 

Type I, II and 
III 

- - - - 

ESM-CaS NPs Reverse 
microemulsion  

Foil and plastic 
substrates (porous) 
tile and  glass (non-
porous) 

Type I and II - - - - 

Y2O3:Eu3+, M+ 
(M+ = Li, Na, K) 

Combustion 
(700 oC/3 h) 

Porous 
 
Non-porous 
 
Semi-porous 

Type I, II  
 
Type I, II, III 
 
Type I, II  

1-30 
d 

30 – 50 oC 3 Cycles 7 d 
immersion 
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Graphic Abstract (TOC) 

 
� Fluxes blended Y2O3:Eu3+ NPswere prepared by facile solution combustion 

route. 

 

� Optimized samples exhibitedas novel sensing agent for the visualization of 
LFPs. 

 

� NH4F flux blended NPs showed the highest PL intensity among the used 
fluxes. 

 

� Y2O3:Eu3+ NPs with NH4F flux was suitable for forensic and LED’s 
applications. 
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The sharp and intense diffraction profiles of the prepared samples were well matched to 
body-centered cubic structure with space group Ia-3 and planes are good agreement with 
standard JCPDS file No. 41-1105. No obvious impurity peaks are observed which confirms 
the formation of single phase compound. A small peak shift at 2θ of ~ 29o corresponding to 
(440) plane is observed due to induced fluxes into the host Y2O3:Eu3+  (5 mol%) (Fig.S1 
(b)).The crystallite size of the prepared samples is calculated using following Scherrer’s 
relation [S1]; 

 θβλ cos/9.0=D                                        ------------------ (1) 

where, λ ; wavelength of the X-rays, β ; the full- width at half maximum (FWHM) and θ ; 
angle of diffraction. 

 
 Fig.S1 (a) PXRD patterns of Y2O3:Eu3+ (5 mol%) NPs with different fluxes, (b) magnified 

image of a plane (440). 
 
 

As shown in Fig.S2, detailed ridge characteristics namely level I - III are clearly 
revealed on spatula, highlighter and glass under both normal and UV 254 nm light. While the 
LFPs on the compact disc and goggle restricted to level 1 and 2 details due to background 
hindrance. Moreover, it is noteworthy that the LFPs developed on rough surfaced coin can 
also provided clear friction edges, demonstrating that our optimized NPs is highly efficient, 
versatile and can be applied to visualize LFPs on virtually all non-porous surfaces.  However, 
in order to demonstrate the robustness of optimized sample for practical use, individual LFPs 
are visualized under both normal and UV 254 nm light on glass surface, as shown in Fig.S3. 
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Well defined three levels of FP ridge details namely, bifurcation, island, crossover, whorl, 
small ridge, eye, bridge, specialty and sweat pores (level III) are clearly visualized under dual 
illumination.  

 

 Fig.S2. Visualized LFPs using NPs on various non-porous surfaces under white and UV 254 
nm light.  
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Fig.S3. Various ridge details of individual FPs on glass surface under normal and UV 254 nm 
light.  

 

These fruits and vegetables subjected to deterioration which depends on 
environmental and storage conditions (e.g., temperature and humidity) [S2]. As can be seen 
from the (Fig.12 (a’ & d’)) it is evident that the brinjal and green apple exhibit well defined 
ridges owing to its smooth and longer shelf life. Further, the visualized LFPs on capsicum, 
cucumber and watermelon are restricted to level I and II details due to high background 
hindrance. LFPs visualized on papaya exhibit indistinct ridge details due to the uneven 
surfaces (Fig.S4 (f’)). The present results clearly demonstrated that the sensitivity of the 
prepared sample is high enough for visualization of LFPs on various neglected semi-porous 
surfaces. 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

Fig.S4. LFPs visualized by the optimized NPs on various neglected vegetables and fruits 
surfaces. 

 

Conversely, bare LFPs are maintained at various temperatures for ~ 10 min and 
afterwards stained by optimized NPs exhibits sharp well defined ridge characteristics and 
reveals level 1 and level 2 details upto 35 oC (Fig.S5) under UV 254 nm light.However, faint 
FP patterns were observed, when temperature was increases to 40 oC.  Further, when the 
temperature was increased to 50 oC, the ridge patterns were completely disappeared due to 
evaporation of biogenic constituents of LFPs. The obtained result signifies the excellent 
reproducibility of the prepared sample. 
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Fig.S5. LFPs on glass surface stored at different temperatures stained by optimized NPs. 

 

Series of physical scratch test is performed on various surfaces including television 
remote, compact disc, granite and spatula before and after abrasion under 254 nm light to 
investigate external abrasions which can destroy LFPs (Fig.S6). The obtained results indicate 
that the visualized LFPs using prepared sample exhibits clear ridge details even after III 
scratch. These results validate the optimized NPs and powder dusting method is versatile and 
novel sensing colorimetric array for visualization of LFPs for forensic analysis.  
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Fig.S6. Visualization of LFPs before and after scratch test using optimized NPs on various 
non-surfaces under normal and UV 254 nm light. 
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