

Seventh Semester B.E. Degree Examination, June/July 2019

Aircraft Stability and Control

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define longitudinal static stability and derive an expression for tail contribution ($C_{m_{\alpha}}$) for
 - the static longitudinal stability of an airplane.

b. For the given general aviation airplane data, determine the contribution of the wing and tail to the C_m versus α curve. Assume standard sea-level atmospheric conditions.

$$W = 2750 \text{ N}, \quad V = 176 \text{ m/s}, \quad X_{cg} = 0.295 \text{ } \overline{c}$$

Wing airfoil characteristics Tail airfoil section

$$C_{m_{ac}} = -0.116$$

$$C_{\ell_{\alpha}} = 0.01/\text{deg}$$

$$C_{\ell_{\alpha}} = 0.097/\text{deg}$$

$$C_{m} = 0.0$$

$$\alpha_0 = -5^{\circ}$$

$$i_t = -1.0^{\circ}$$

$$x = 0.257$$

$$i_t = -1.0^{\circ}$$
 $C_{L_{\alpha_t}} = 3.91 \text{ rad}^{-1}$

$$i_{\omega} = 1.0^{\circ}$$

Reference geometry: S=184 m², $S_H=43$ m² = S_t , b=33.4 m, $l_t=16$ m, $\overline{c}=5.7$ m, $\eta=1$.

- a. Derive an expression for Elevator angle to Trim and with the help of pitching moment (10 Marks) curves. How Elevator angle to Trim can be obtained?
 - Explain the effect of Elevator required for landing and restriction of forward limit of C.G. (10 Marks) Range.
- With a help of diagram and expression, explain the control surface floating characteristics 3 (10 Marks) and aerodynamic balance.
 - Derive an expression for stick force gradients in Unaccelerated Flight and also obtain the (10 Marks) expression for the slope of the stick force versus speed curve.
- Obtain an expression for Rudder Control Effectiveness.

(06 Marks)

- b. Explain the contribution of Aircraft components to directional stability.
- (06 Marks)
- c. Obtain an expression for the stability contribution of the vertical tail with a free rudder. (08 Marks)

PART - B

Define Roll stability. 5

(04 Marks)

For the following data of NAVION airplane, estimate the roll control power, $C_{\ell_{\delta_a}}$. Assume that the wing and aileron geometry are as b/2=16.7 m, $\lambda=0.54$, $c_r=7.2$ m, $c_t=3.9$ m, $y_1 = 11.1$ m, $y_2 = 16$ m, S = 184 m², $C_{L_{\alpha_{\omega}}} = 4.44/\text{rad}$, $\tau = 0.36$. Consider for a tapered wing the chord can be expressed as a function of y by the following relationship $C = C_r \left[1 + \left(\frac{\lambda - 1}{b/2} \right) y \right].$ (08 Marks)

(08 Marks)

- Develop the equations of longitudinal motion for airplane pure pitching condition. (12 Marks) 6
 - b. Write short notes on orientation and position of the airplane. (08 Marks)
- 7 Obtain the derivatives due to the pitching velocity. a. (10 Marks) Obtain the derivatives due to the Rolling Rate. b. (10 Marks)
- 8 Write short notes on the following:
 - Effect of wind shear
 - Flying qualities in pitch
 - Spiral, Rolling and Dutch roll mode
 - d. Roll-Pitch-Yaw Inertial Coupling

(20 Marks)