


15CV561

# Fifth Semester B.E. Degree Examination, June/July 2019 Traffic Engineering

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

# Module-1

1 a. Explain the interdependency of "land use and transport" with a diagram.

(10 Marks)

b. Discuss briefly the PIEV theory.

(06 Marks)

#### OR

a. Describe the fundamentals of traffic flow.

(06 Marks)

b. A passenger car weighing 3 tonnes is required to accelerate at a rate of  $3\text{m/sec}^2$  in the first gear from 9 speed of 10 kmph to 25kmph. The gradient is +1% and road has a black topped surface. The frontal projection are of the car is  $2\text{m}^2$ . The car tyres have radius of 0.33m. The rear axle gear ratio is 3.82:1 and the first gear ratio is 2.78:1. Calculate the speed of the engine. The radius and deformation factor for tyres is 0.36 and 0.95 respectively. Assume transmission efficiency as 0.88 and f = 0.02,  $c_a = 0.39$ . (10 Marks)

# Module-2

3 a. Explain the different types of classified volume survey presentation.

(06 Marks)

b. Two vehicles A and B approaching at right angles, A from west and b from south, collide with each other. After collision, vehicle 'A' skids in a direction 50° N of west and vehicle 'B' 60°E of north. The initial skid distances of vehicles 'A' and 'B' are 38m and 20m respectively before collision. The skid distance after collision are 15m and 36m respectively. If the weights f vehicles 'A' and 'B' are 4.0 and 6.0T. Calculate the original speeds of vehicle. Assume f = 0.55.

#### OR

a. Explain concept of Level Of Service (LOS) and its applications.

(06 Marks)

b. The table Q4(b) below gives the consolidated data of spot speed studies on a section of a road. Determine: i) the upper and lower values or speed limits for installing speed regulations ii) modal speed for the range.

Table Q4(b): Speed Studies

| Speed      | Number of speed | Speed      | Number of speed |
|------------|-----------------|------------|-----------------|
| range kmph | observations    | range kmph | observations    |
| 0 - 10     | 0               | 50 - 60    | 216             |
| 10 - 20    | 11              | 60 - 70    | 68              |
| 20 - 30    | 30              | 70 -80     | 24              |
| 30 - 40    | 105             | 80 – 90    | 0               |
| 40 - 50    | 233             |            |                 |

(10 Marks)

# Module-3

- 5 a. At a right tangled intersection of two roads, road 1 has four lanes and road 2 has two lanes with a width of 12m and 6.6m respectively. The volume of traffic approaching the intersection during design hour are 900 and 743 PCU/hr on the two approaches of road2. design the signal timings as per IRC. (12 Marks)
  - b. Explain the significant roles of traffic control personnel.

(04 Marks)

(06 Marks)

### OR

- 6 a. Explain the three types of traffic sings with 3 examples for each with diagrams. (10 Marks)
  - b. Explain the design factors to be considered for design of rotary intersection.

# Module-4

- 7 a. Describe the causes of road accidents and also suggest preventive measures to control accidents. (08 Marks)
  - b. Describe the various environmental hazards due to traffic in urban areas.

(08 Marks)

#### OR

- 8 a. Explain the arrangement of street lighting in urban areas and show the lighting arrangement sketch for signalized and rotary intersections. (08 Marks)
  - b. Explain the importance and promotion of non motorized transport.

(08 Marks)

# Module-5

9 a. Explain the various method of traffic segregation.

(08 Marks)

b. Explain the concept of area traffic management system control (ATC) with an example.

(08 Marks)

#### OR

10 a. Explain applications of Intelligent Transport System (ITS).

(08 Marks)

b. Explain parking pricing and congestion pricing methods to control traffic management.

(08 Marks)

\* \* \* \* :