Sixth Semester B.E. Degree Examination, June/July 2019 Compiler Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

1 a. Explain compiler construction tools.

(06 Marks)

b. Discuss three types of software productivity tools.

- (06 Marks)
- c. Construct the transition diagram to recognize the tokens given below:
 - i) Relational operator
 - ii) Identifier
 - iii) Unsigned number.

(08 Marks)

- 2 a. What is recursive descent parser? Consider the grammar
 - $S \rightarrow c \times d$
 - $X \rightarrow ab \mid a$

Parse the string "cad" using recursive descent parser.

(04 Marks)

- b. Remove left recursion from the grammar given below
 - $S \rightarrow (M) \mid a$

 $M \rightarrow M; S \mid S$

(04 Marks)

- c. Construct predictive parsing table for the following grammar
 - $P \rightarrow Ra | Qba$
 - R → aba | caba | Rbc

 $Q \rightarrow bbc bc$

(09 Marks)

d. Write an algorithm for constructing predictive parsing table.

(03 Marks)

(04 Marks)

- 3 a. What is the meaning 'L' and 'R' in LR grammar? Why LR parsing is attractive?
 - b. Construct L_R(0) items for the following grammar
 - $E \rightarrow E + T \mid T$
 - $T \rightarrow TF \mid F$
 - $F \rightarrow F * |a| b$

(08 Marks)

- c. What is meant by handle pruning? Consider the following grammar.
 - $S \rightarrow TL$:
 - $T \rightarrow int | float$
 - $L \rightarrow L$, id | id

Parse the input string int id, id; using shift reduce parser.

(08 Marks)

- 4 a. Construct canonical LR(1) items for the grammar
 - $S \rightarrow (L)$ a

 $L \rightarrow L, s \mid s$

(10 Marks)

b. How LALR parsing table is constructed? Develop an algorithm for the same.

(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

PART - B

- 5 a. Write semantic rules and annoted parse tree to compute 5 * 6, using a grammar suitable for top down parsing.

 (07 Marks)

 (04 Marks)
 - b. Give syntax directed definition for simple type declaration. (04 Marks)
 - c. Write SDD for while statement. (05 Marks)
 - d. Define inherited and synthesized attribute. (04 Marks)
- 6 a. Describe syntax directed definition for flow of control statements. (10 Marks)
 - b. Obtain DAG for the expression a + a * (b c) + (b c) * d. Also give the sequence of steps for constructing the same. (06 Marks)
 - c. Write a note on Quad ruples and Triples. (04 Marks)
- 7 a. Write intermediate code for the following a = f(b[i]) (04 Marks)
 - b. Explain in detail, the strategy for reducing fragmentation in heap memory. (08 Marks)
 - c. Discuss the performance metrics to be considered while designing a garbage collector.

 (08 Marks)
- 8 a. With an example, explain common subexpression and dead code elimination methods.
 (10 Marks)
 - b. Consider the following program segment

for i from 1 to 10 do

for j from 1 to 10 do

a[i, j] = 0.0

for i from 1 to 10 do

a[i, i] = 1.0

write the three-address code and construct the basic blocks.

(06 Marks)

c. Write machine code, equivalent for the following "If x < y goto L". (04 Marks)