GBGS SCHEME 17EE32 ## Third Semester B.E. Degree Examination, June/July 2019 **Electric Circuit Analysis** Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing ONE full question from each module. ## Module-1 1 a. Find the input impedance Z_{in} for the network shown in Fig.Q.1(a) (06 Marks) b. Construct the exact dual of the network N₁ shown in Fig.Q.1(b) using dot method. (08 Marks) c. Find the loop currents i_1 , i_2 and i_3 using Mesh analysis for the network shown in Fig.Q.1(c) (06 Marks) OR 2 a. Write a system of nodal equations for the circuit of Fig.Q.2(a) using the nodal voltages V₁ and V₂ as the variables. What power is furnished by the dependent sources? (10 Marks) b. Find the voltage across the 5Ω resistor of Fig.Q.2(b) using source transformation technique. (06 Marks) 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. c. For the network shown in Fig.Q.2(c). Find the voltage V_{AB} using the nodal method. (04 Marks) Module-2 3 a. In the network shown in Fig.Q.3(a) two voltage sources act on the lead impedance connected to the terminals AB. If this load is variable in both reactance and resistance, what load Z_L will receive maximum power? What is the value of this maximum power? (06 Marks) Fig.Q.3(a) b. For the network shown in Fig.Q.3(b), find the Thevenin's equivalent network across the terminals A and B. (08 Marks) Fig.Q.3(b) c. In the network shown in Fig.Q.3(c), determine the voltage ' V_x '. Then apply the reciprocity theorem and compare the two voltages. (06 Marks) Fig.Q.3(c) 4 a. Use superposition theorem to find voltage 'V' in the network shown in Fig.Q.4(a) (06 Marks) Fig.Q.4(a) b. Fid.Q.4(b) shows one form of the equivalent circuit of a transistor amplifier. Obtain its Thevenin's equivalent network across the output terminals 'A' and 'B'. (08 Marks) Fig.Q.4(b) c. Find the value of R_L of the network of Fig.Q.4(c) that will absorb a maximum power and specify the value of that power. (06 Marks) Fig.Q.4(c) - A series RLC circuit has $Q_0 = 5.1$ at its resonant frequency of 100kHz. Assuming the power dissipation of the circuit is 100W when drawing a current of 0.8A, find: i) R,L,C ii) Band width (Δf) of the circuit and iii) Half-power frequencies. (08 Marks) - b. Fig.Q.5(b) shows a network with zero capacitor voltage and zero inductor current when the switch 'K' is open. At t = 0 the switch 'K' is closed. Solve for i) V_1 and V_2 at $t = 0^+$ ii) $\frac{dv_1}{dt}$ and $\frac{dv_2}{dt}$ at $t = 0^+$ iii) $\frac{d^2v_2}{dt^2}$ at $t = 0^+$ (12 Marks) OR 6 a. Fig.Q.6(a) shows a RLC parallel circuit excited by a dc current source. At t = 0, the switch 'K' is opened. Find v(t). (12 Marks) b. For the circuit of Fig.Q.6(b), find the value of capacitance so that the circuit resonates at $W_0 = 5K \text{ rad/s}$. (08 Marks) Module-4 7 a. Find the Laplace transform of the periodic Saw tooth wave shown in Fig.Q.7(a). (12 Marks) b. Find the Laplace transform for the wave form shown in Fig.Q.7(b). (08 Marks) 8 a. State and prove initial – value and final – value theorems in Laplace transformation. (10 Marks) b. Fig.Q.8(b) shows an R-C circuit excited by a sinusoidal voltage $V(t) = 200 \sin{(2000t + \phi)}$. The capacitor has an initial charge of 1.25×10^{-3} C with polarity as shown. Find the current if the circuit is switched on at $\phi = 90^{\circ}$, using Laplace transformation technique. (10 Marks) Module-5 9 a. Find the reading on the Wattmeter in Fig.Q.9(a) when the circuit is connected to a 400V, 3-φ supply. The phase sequence is RYB. Neglect Wattmeter losses. (10 Marks) b. Obtain the y-parameters of the circuit shown in Fig.Q.9(b). Find its equivalent circuit using y-parameters and find whether the network is i) reciprocal ii) symmetrical. (10 Marks) 10 a. In a 3-phase 3-wire 400 \angle 0° system abc, loads $6\angle$ 0°, $6\angle$ 0° and $8\angle$ -90° Ω are connected to phases a, b, c respectively as shown in Fig.Q.10(a). Find: i) Line currents and ii) Voltage V_{ao} , V_{bo} and V_{co} . b. Find the transmission or ABCD parameters of network shown in Fig.Q.10(b). Find whether the network is i) Reciprocal ii) Symmetrical. (10 Marks)