

Third Semester B.E. Degree Examination, June/July 2019

Logic Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Design a combinational logic truth table so that a logic-1 output is generated when majority of four inputs is true (logic-1). Write the canonical minterm and maxterm expressions from truth table in decimal notation. (04 Marks)
 - b. Simplify the following Boolean equations using K-map:
 - i) $f_1(w, x, y, z) = \sum (1, 3, 4, 7, 8, 12) + d(5, 10, 13, 14)$
 - ii) $f_2(a, b, c, d, e) = \Pi(0, 2, 4, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 24, 25, 26, 27)$ (12 Marks)
 - c. What are don't care terms? How are these used by the designer?

(04 Marks)

- For the Boolean function $f(w, x, y, z) = \sum (0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$ 2
 - i) Find the set of prime implicants.
 - ii) Obtain the minimal SOP expression using Quine-McClusky minimization technique.

(10 Marks)

- b. Simplify the Boolean function $f(w, x, y, z) = \sum (2, 9, 10, 11, 13, 14, 15)$ using Variable Entered K-Map (VEM) with variable 'z' as MEV. Realize the simplified expression using NAND gates only. (10 Marks)
- With block diagram representation, show how to connect two 74XX138 decoder ICs to form 3 a single 4-to-16 decoder. (04 Marks)
 - b. Realize full subtractor using IC74XX139 and NAND gates.

(06 Marks)

Explain, with diagram, how to use IC74XX147 to interface keypad to a digital system.

(10 Marks)

Realize the Boolean function $f(w, x, y, z) = \sum (0, 1, 2, 4, 5, 7, 8, 9, 12, 13)$ using IC74XX151 a. (8X1 MUX). Use w, x, y variables for select line inputs. (05 Marks)

Design 1-bit comparator.

(05 Marks) (10 Marks)

Explain, with diagrams, the design of 4-bit adder/subtractor using IC 7483.

5 Explain SR-latch and \overline{S} \overline{R} - latch operation. a.

(08 Marks)

b. Explain 0's catching and 1's catching effect in MSJK flip-flop.

(08 Marks)

Explain asynchronous inputs in edge-triggered flip-flops.

(04 Marks)

6 Derive the characteristics equation of JK flip-flop. a.

(05 Marks)

- Draw the logic diagram of parallel-in unidirectional shift register and explain its operation. b. (08 Marks)
- Explain ring and Johnson counters with diagram and counting sequence.

(07 Marks)

7 a. Describe the following terms with respect to sequential machines:

i) State

ii) Present state

iii) Next state

(06 Marks)

b. For the sequential machine shown in Fig.Q7(b):

- i) Write the excitation and output functions
- ii) Obtain the transition and state tables.
- iii) Draw the state diagram.
- iv) Is this a mealy machine or Moore machine?

(14 Marks)

8 a. Construct a Mealy state diagram that will detect a serial input sequence 10110. The detection of required bit pattern can occur in a longer data string and the correct pattern can overlap with another pattern. When the input pattern has been detected, cause the output Z to be asserted high.

b. Design a cyclic mod-8 synchronous binary counter using T flip-flops that will count the number of occurrences in an input; that is, the number of times it is a 1. (12 Marks)

* * * * *