USN						

15EC36

Third Semester B.E. Degree Examination, June/July 2019 **Engineering Electromagnetics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Four point charges each $20\mu c$ are on x-y axes at \pm 4m. find the force on a $100\mu c$ point 1 (06 Marks) charge at (0, 0, 3)m.
 - Define electric field intensity (\vec{E}) and using Coulomb's law derives the expression for \vec{E} due to a point charge.
 - c. A line charge of density $\rho_k = 24$ n c/m is located in free space on the line y = 1, z = 2. Find (06 Marks) electric filed intensity E at P(6, -1, 3).

- Derive an expression for Electric field Intensity \vec{E} due to an infinite line charge of density 2
 - b. A point charge of 6μc is located at origin and a uniform line charge of density 180nc/m lies along x - axis,
 - i) Find electric flux density D at (1, 2, 4)
 - ii) Calculate the total electric flux leaving the surface of a sphere of 4m radius centered (08 Marks) at origin.

Module-2

- A charge of Q coulombs is uniformly distributed throughout the volume of a sphere of radius 'R' meters. Using Gauss law Find electric field intensity 'E' everywhere. Plot the (08 Marks) variation of E with radial distance.
 - a, in spherical co-ordinates evaluate both sides of Divergence Theorem (08 Marks) for the volume enclosed between r = 1m and r = 2m.

- a. Find the work done in moving a $5\mu c$ point charge from origin to p(2, -1, 4) through $E = 2xyz ax + x^2za_v + x^2ya_z v/m$ via the path
 - i) Straight line segment (0, 0, 0) to (2, 0, 0) to (2, -1, 0) to (2, -1, 4)
 - ii) Straight line x = -2y, z = 2x.
 - b. Given potential function $V = 50x^2yz + 20y^2 V$ in free space find
 - i) Voltage at p(1, 2, -3)
 - ii) E at P
 - iii) a_N at P

(06 Marks)

(10 Marks)

(08 Marks)

Module-3

- 5 a. Using Laplace Equation derive the expression for capacitance of co-axial cylindrical capacitor. Assume the potential is a function of ' ρ ' only. The boundary condition are V=0 at $\rho=b$ and $V=V_0$ at $\rho=a$ (b>a) (08 Marks)
 - b. Conducting planes at $\phi = 10^\circ$ and $\phi = 0^\circ$ in cylindrical co-ordinates have voltages of 75V and 0 V respectively. Obtain the expression for Electric flux density 'D' in the region between the planes which contains a material for which $E_r = 1.65$. (08 Marks)

OR

- 6 a. Using Biot Savart's law derive an expression for magnetic field intensity 'H' due to an infinite current carrying conductor at any point P. (08 Marks)
 - b. In cylindrical co-ordinates magnetic field $H = (2\rho \rho^2)$ at A/m. for $0 \le \rho \le I$.
 - i) Determine current density 'J'
 - ii) What total current passes through a surface z = 0, $0 \le \rho \le 1$.

Module-4

- 7 a. Derive Lorentz force equation for a moving charge in both electric and magnetic fields.
 - b. The point charge Q = 18nc has a velocity of 5×10^6 m/s in the direction $q_v = 0.60 a_x + 0.75 a_y + 0.30 a_z$. Calculate magnetic force exerted on the charge by
 - i) B = -3ax + 4ay + 6az MT
 - ii) E = -3ax + 4ay + 6az KV/m
 - c. The magnetization in a magnetic material for which $\chi_m = 8$ is given in a certain region as $150z^2$ a_x A/m. At z = 4cm, find the magnitude of J and J_b. (06 Marks)

OR.

- 8 a. Derive the expression for boundary conditions for magnetic flux density B, magnetic field intensity H and magnetization M for both normal and tangential field. (08 Marks)
 - b. Let $\mu_1 = 5~\mu\text{H/m}$ in region A where x < 0 and $\mu_2 = 20\mu\text{H/m}$ in region B where x > 0. If there is a surface current density $K = 150~a_y 200~a_z$ A/m at x = 0 and if $H_A = 300~a_x 400a_y + 500a_z$ A/m find (i) $|H_{tA}|$ (ii) $|H_{NA}|$ (iii) $|H_{tB}|$ (iv) $|H_{NB}|$ (08 Marks)

Module-5

- 9 a. What was the inconsistency of Ampere's law with continuity equation? How was it modified by Maxwell? (06 Marks)
 - b. Show that the displacement current in the dielectric of parallel plate capacitor is equal to conduction current between the two plates. (04 Marks)
 - c. Given $E = E_m \sin(wt \beta z)$ ay V/m in free space find, D, B and H.

OR

- 10 a. Show that the intrinsic impedance defined as $\eta = \frac{|E|}{|H|}$ is equal to $\sqrt{\frac{\mu}{\epsilon}}$ for a perfect dielectric
 - and hence prove that for free space $\eta = 377\Omega$.

(08 Marks)

(06 Marks)

b. A wave propagation in a lossless dielectric has the components

 $E = 500 \cos (10^7 t - \beta z) a_x V/m$

 $H = 1.1 \cos (10^7 t - \beta z) a_v A/m$

If the wave is travelling at v = 0.5C, where 'C' is velocity of light in free space find μ_r , \in_r , β , λ . (08 Marks)