

USN						17EC32
USIN						

Third Semester B.E. Degree Examination, June/July 2019 **Electronic Instrumentation**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define the following terms as applied to an electronic instruments: 1
 - i) Accuracy
 - ii) Precision
 - iii) Error
 - iv) Resolution
 - v) Sensitivity

(10 Marks)

b. A basic D'Arsonval movement with an internal resistance of 50Ω and a fall scale deflection current of 2 mA is to be used as a multirange voltmeter. Determine the series resistances to obtain the voltage ranges of 0-10V, 0-50V, 0-100V and 0-500V. (10 Marks)

- Explain the working of a true RMS voltmeter with a suitable diagram. (10 Marks) 2 (10 Marks)
 - Explain the various types of thermocouple used in RF ammeter in detail.

Module-2

- Explain the working of dual slope type DVM with a block diagram. (10 Marks) 3
 - With a neat block diagram, explain the working of frequency meter. (10 Marks) b.

OR

- Draw the block diagram and explain the working principle of successive approximation type (10 Marks)
 - Explain the working of digital pH meter with the help of block diagram. (10 Marks) b.

Module-3

- Draw the block diagram of CRO and explain the functions of each block. (10 Marks) 5
 - Explain with a block diagram AF sine-square wane generator. (10 Marks) b.

OR

- Explain with a block diagram of function generator in detail. (10 Marks) 6
 - Explain the operation of digital storage oscilloscope with a help of block diagram. (10 Marks)

Module-4

- Explain with a help of a neat diagram, construction and principle of operation of Megger. 7 (10 Marks)
 - Draw the Maxwell's bridge to determine inductance in terms of known capacitance and (10 Marks) derive Q-factor and expression for inductance.

OR

1 of 2

- Find parallel R and C, that causes a Wien's bridge to null with the following components 8 values. $R_1=2.7~K\Omega,~R_2=22~K\Omega,~C_1=5~\mu F,~R_4=100~K\Omega$ and operating frequency is (10 Marks) 2.2 kHz.
 - b. Explain susceptance method of Q-measurement.

(06 Marks)

c. The self capacitance of a coil is to be measured by Q-meter. The first measurement result is f_1 = 1.5 MHz and C_1 = 550 PF. The second measurement result is f_2 = 3 MHz and a new value of tuning capacitor is 110 pF. Find the distributed capacitance and inductance.

(04 Marks)

- What is transducer? Explain working of resistive position transducer with a neat sketch. 9
 - What are the different types of photoelectric transducer? Explain photo voltaic transducer. (10 Marks)

- With a neat sketch, explain construction and working of LVDT. (10 Marks) 10
 - What is gauge factor? Derive an expression for gauge factor and prove that $K = 1 + 2\mu$. (10 Marks)