Third Semester B.E. Degree Examination, June/July 2019 Analog Electronics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Draw the graphical symbol and r_e-equivalent circuit for the common Emitter and common base configuration including the effect of r_o. (06 Marks)
 - b. Write the expression for Z_i , Z_o and A_v of a voltage divider configuration using AC equivalent circuit with r_e model, [with bypassed R_E], for a BJT amplifier. (08 Marks)
 - c. For the circuit shown in Fig.Q.1(c), determine Z_i , Z_o and A_v .

(06 Marks)

Fig.Q.1(c)

OR

- 2 a. Draw the circuit diagram of Darlington amplifier and find DC parameters I_{C_2} and V_{CE_2} .
 - Derive the expression for Z_i , Z_o and A_v for common emitter fixed bias configuration using approximate hybrid equivalent circuit. (08 Marks)
 - c. Determine input impedance, output impedance and voltage gain of emitter follower, where $V_{CC} = 12V$, $R_B = 220$ K Ω , $R_E = 3.3$ K Ω , $\beta = 100$ and $r_0 = \infty \Omega$. Use r_e model. (06 Marks)

Module-2

- 3 a. Describe the construction and working principle of n-channel JFET. (06 Marks)
 - b. Derive the expression for Z_i, Z_o and A_v using AC equivalent circuit for JFET common-gate configuration. (08 Marks)
 - c. For the FET amplifier show in Fig.Q.3(c). Calculate Z_i , Z_o and A_v with the effect of r_d .

Fig.Q.3(c)

(06 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

OR

Draw and explain the drain and transfer characteristic of n-channel depletion MOSFET.

(06 Marks)

- Write the ac equivalent circuit for FET self biased configuration and determine Zi, Zo and Av [with Rs bypassed). (08 Marks)
- Give the comparison between JFET and MOSFET

(06 Marks)

Module-3

- Draw the single RC coupled BJT amplifier and derive the expression for lower cut-off 5 frequencies due to coupling capacitors C_S and C_C . (10 Marks)
 - What is miller effect? Prove that Miller effect input capacitance is $C_{mi} = (1 A_v)C_f$ and out

miller effect capacitance is $C_{mo} = \left(1 - \frac{1}{A_v}\right)C_f$.

(10 Marks)

- Draw the high frequency ac equivalent circuit for FET amplifier and derive $f_{\rm Hi}$ and $f_{\rm Ho}$. (10 Marks)
 - Derive the expression for overall higher cut-off frequency for a multistage amplifier.

An amplifier consists of 3 identical stages in cascade, the bandwidth of overall-amplifier extends from 20Hz to 20kHz. Find the bandwidth of individual stages. (05 Marks)

Module-4

- 7 Draw the block diagrams of the following feedback connections types:
 - i) Voltage-series feedback
 - ii) Voltage-shunt feedback
 - iii) Current-series feedback
 - Current-shunt feedback

(08 Marks)

- Draw the circuit diagram of FET phase shift oscillator and explain the operation. Write the expression for the frequency of oscillations.
- c. In a Colpitts oscillator, $C_1 = C_2 = C$ and $L = 100\mu H$. The frequency of oscillations is 500kHz. Determine the value of C. (04 Marks)

- With block diagram of voltage shunt feedback connection type, obtain the expression for 8 input impedance.
 - With the help of neat circuit diagram, explain the operation of transistor Hartley oscillator write the expression for the frequency of oscillations. (08 Marks)
 - c. A crystal has the following parameter L = 0.334H, $C_m = 1 pF$, C = 0.065 pF and $R = 5.5 K\Omega$. Find the series and parallel resonant frequency. (04 Marks)

Module-5

- Explain the operation of series-fed class-A power amplifier and show that maximum conversion efficiency is 25%.
 - b. A single transistor amplifier with transformer coupled load produces harmonic amplitudes in the output as $B_0 = 1.5 \text{mA}$, $B_1 = 120 \text{mA}$, $B_2 = 10 \text{mA}$, $B_3 = 4 \text{mA}$, $B_4 = 2 \text{mA}$ and $B_5 = 1 \text{mA}$
 - i) Determine the percentage total harmonic distortion.
 - ii) Assume a second identical transistor is used along with a suitable transformer to provide pushpull operation. Use the above harmonic amplitudes to find the new total harmonic distortion. (06 Marks)
 - Draw the block diagram of shunt voltage regulator and explain the individual blocks.

(06 Marks)

- 10 a. What is harmonic distortion? Explain the three point method of calculating the second harmonic distortion. (06 Marks)
 - b. A class-B push-pull amplifier operating with $V_{CC}=25V$ provides a 22V peak signal to an 8Ω load. Find: i) Peak load current ii) dc current drawn from the supply 11P iii) DC power iv) ac power v) Efficiency. (06 Marks)
 - c. Draw the block diagram of series voltage regulator and explain the operation. Also find the o/p voltage and the zener current for the series regulator shown in Fig.Q.10(c). (08 Marks)

Fig.Q.10(c)