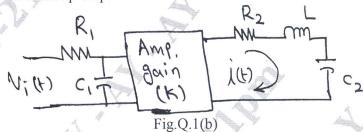
Fourth Semester B.E. Degree Examination, June/July 2019 **Control Systems**

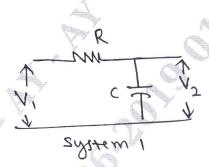
Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.


What are the requirements of a good control system?

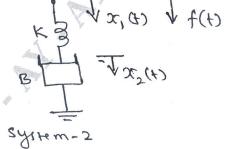
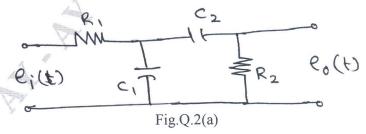
(04 Marks)

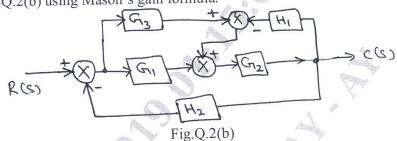

 $\frac{I(s)}{V_i(s)}$ for the circuit diagram shown in Fig.Q.1(b). Where Determine the transfer function

'K' is the gain of an ideal op-amp.

(08 Marks)

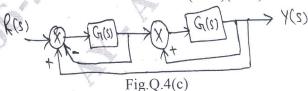
Show that the two system shown in Fig.Q.1(c) are analogous system by comparing their transfer functions:


Fig.Q.1(c)

Draw the block diagram for the electric circuit shown in Fig.Q.2(a) and evaluate the transfer function (10 Marks)

1 of 3


b. Draw the signal flow graph and determine the overall transfer function of the block diagram shown in Fig.Q.2(b) using Mason's gain formula.

- Derive the expression for peak overshoot in terms of ξ and W_n for second order control (04 Marks) systems.
 - b. A unity feed back system has $G(s) = \frac{K}{s(s+2)(s^2+2s+s)}$
 - For a unit ramp input, it is desired $e_{ss} \le 0.2$ find K. i)
 - Determine e_{ss} if input $r(t) = 2 + 4t + \frac{t^2}{2}$. (08 Marks) ii)
 - A system has 30% overshoot and settling time of 5 seconds for unit step input. Determine: iii) Output response. ii) Peak time i) The transfer function
- Define the following terms:
 - Conditionally stable system i)
 - Marginally stable system ii)
 - Relative stable system. iii) The open loop transfer function of a unity feedback system is given by

(06 Marks)

- $G(s) = \frac{k(s+10)}{s^2(s^2+2s+10)}$
- Find the value of K so that the steady state error for a unity parabolic input is ≤ 0.1 . i)
- For the value of K found in part (1) verify whether the closed loop system is stable or ii) (06 Marks) not.
- The block diagram of a feedback control system is shown in Fig.Q.4(c). Apply RH-criterion (08 Marks) to determine the range of 'K' for stability if G(s) =

PART - B

- The characteristic equation of a single loop unity feedbacks control system is given by 5 $F(s) = s^3 + 8s^2 + 20s + k = 0$ sketch the complete root locus diagram. (10 Marks)
 - Prove that a combination of two poles $s = -a_1$ and $s = -a_2$, one zero is s = -b to the left of both of them on the real axis results in a root locus whose complex root branches from a circle centered at the zero with radius given by $\sqrt{(b-a_1)(b-a_2)}$, the root locus gain varying from (10 Marks) 0 to ∞ .

10ES43

a. What are the limitations of frequency domain approach?

(04 Marks)

b. List the effect of lead compensation and lag compensation.

(04 Marks)

Determine the transfer function of a system whose asymptotic gain plot is shown in (12 Marks) Fig.Q.6(c)

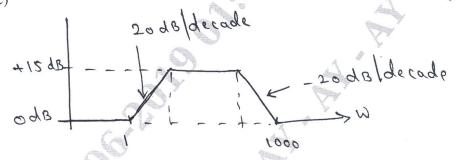


Fig.Q.6(c

Draw the exact polar plot of

GH(s) =
$$\frac{12}{s(s+1)(s+2)}$$
.

(05 Marks)

b. Explain Nyquist stability criterion.

(05 Marks)

c. A -ve feed back control system is characterized by an open loop transfer function

 $G(s)H(s) = \frac{5}{s(s+1)}$. Investigate the closed loop stability of the system using Nyquist (10 Marks) stability criterion.

- Define state variable and state vector. List the properties of state transition matrix. (08 Marks) 8
 - For a certain system, when

$$X(0) = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \text{ then } X(t) = \begin{bmatrix} e^{-3t} \\ -3e^{-3t} \end{bmatrix}$$

While $X(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then $X(t) = \begin{bmatrix} e^t \\ e^t \end{bmatrix}$

Determine the system matrix 'A' also find the state transition matrix.

(12 Marks)