SBCS SCHEWE

USN

15CS/IS54

Fifth Semester B.E. Degree Examination, June/July 2019 **Automata Theory and Computability**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Define the following: i) string ii) alphabet iii) language. (06 Marks)

Design a deterministic finite state machine for the following language over $\Sigma = \{a, b\}$.

i) $L = \{W | | W | mod 3 \ge |W| mod 2 \}$

ii) $L = \{w \mid W \text{ ends either with ab or ba}\}.$

(10 Marks)

Write a note on finite state transducers. a.

(07 Marks)

Define DFSM? Minimize the following FSM. [Refer Fig.Q2(b)]

Fig.Q2(b)

(09 Marks)

Module-2

Write the equivalent Regular Expression 3 for the given Finite machine. [Refer Fig.Q3(a)] (08 Marks)

Fig Q3(a)

Write the Regular Expression for the following language.

i) $\{w \in \{a, b\}^* \text{ with atmost one a}\}$

ii) $\{w \in \{a, b\}^* \text{ does not end with ba}\}$

iii) $\{w \in \{0, 1\}^* \text{ has substring } 001\}$

iv) $\{w \in \{0, 1\}^* | W | \text{ is even} \}.$

(08 Marks)

OR

State and prove the pumping theorem for regular language. 4

(08 Marks)

Show that the language $L = \{a^n b^n \mid n \ge 0 \}$ is not regular.

(08 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3

- Define grammar. Write the CFG for the following language. 5
 - i) $L = \{ w \in \{a, b\}^* \mid n_a(w) = n_b(w) \}$

ii) $L = \{a^i b^j | i = j+1\}$. (08 b. What is inherent ambiguity? Show that the language given is inherently amtriguous? (08 Marks)

 $L = \left\{ a^{n}b^{n}c^{m} \mid n, m \ge 0 \right\} \cup \left\{ a^{n}b^{m}c^{n} \mid n, m \ge 0 \right\}.$

(08 Marks)

- OR Define PDA? Design PDA for the language $L = \left\{ a^n b^m a^n \mid n, m \ge 0 \right\}$. (06 Marks) 6
 - Convert the following language from CFG to PDA $L = \{ww^R \mid w \in \{0, 1\}^*\}$. (06 Marks) b.
 - Convert the following CFG to CNF $E \rightarrow E + E \mid E * E \mid (E) \mid id$. (04 Marks) C.

Module-4

- Prove that the language $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context free. (08 Marks) 7 a.
 - Prove that CFL are not closed under intersection, complement or difference? (08 Marks) b.

- (08 Marks) 8 a.
 - Define a turning machine. Explain the working of a turning machine. (05 Marks) b.
 - Write a note on multitape machine. (03 Marks)

- 9 Write a short notes on:
 - Growth rate of function (05 Marks) a. Church-turning thesis
 - (06 Marks)
 - Linear bounded automata. (05 Marks)

OR

- 10 Write a short notes on:
 - Post correspondence problem (05 Marks)
 - Halting problem in turning machine (05 Marks)
 - c. Various types of turning machine. (06 Marks)