Sixth Semester B.E. Degree Examination, June/July 2019 **Compiler Design**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

Write a brief note on Language Processing System. 1

(04 Marks) (10 Marks)

- b. Explain with a neat diagram, the phases of compiler.
- c. Construct the transition diagram to recognize the tokens given below: Relational operation
 - ii) Unsigned number.

(06 Marks)

a. Define Left recursion and Left factoring and apply the same for the Grammar

$$E \rightarrow E * T / T$$

 $T \rightarrow id + T / id$

(06 Marks)

- b. Given the Grammar
 - $S \rightarrow XS \mid dS \mid \in \mathbb{N}$
 - $X \rightarrow Y \mid Zb \mid aY$
 - $Y \rightarrow cZ$
 - $Z \rightarrow e$
 - Construct FIRST and FOLLOW sets.
 - ii) Construct the Predictive parsing table.
 - iii) Show the moves made by the predictive parser on the input "dace".

(10 Marks)

- c. How to verify whether grammar is LL(1) or not, show that
 - $S \rightarrow |AB| \in$
 - $A \rightarrow |AC|OC$
 - $B \rightarrow OS$
 - $C \rightarrow 1$ is LL(1) without constructing any table.

(04 Marks)

- a. What is handle pruning? Explain with the help of the grammar
 - $S \rightarrow (L) \mid a$
 - $L \rightarrow L$, S | S and input string (a, (a, a)).

(04 Marks)

- b. Explain the conflicts that may occur during shift reduce parsing, consider dangling else grammar. (04 Marks)
- c. Given the grammar
 - $S \rightarrow (S) S \in S$ or can be written as
 - $S \rightarrow (S) S$
 - $S \rightarrow \in$
 - i) Find LR(0) items
 - ii) Construct SLR(1) parsing table and show the parsing steps for the input ()()\$.

(12 Marks)

- Given the grammar $S \rightarrow CC$
 - i) Construct sets of LR(1) items.
 - ii) Construct Canonical LR(1) Parsing table.

(14 Marks)

- b. Write the face specification of a simple desk calculator with the following grammar for arithmetic expressions
 - $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$
 - $F \rightarrow (E)$ digit.

(06 Marks)

PART - B

- 5 a. Write annotated parse tree for 3 * 5 + 4n using top down approach. Write semantic rules for each. (08 Marks)
 - (04 Marks)

b. Write a brief note on dependency graph.

- (04 Marks)
- c. Construct a dependency graph for the declaration float id₁, id₂, id₃,
 - What is DAG? Construct a DAG for the following expression a + a * (b c) + (b c) * d

(05 Marks)

- b. Write annotated parse tree for C + a [i] [j] and derive 3 address code for the same expression. (08 Marks)
- c. Write S.D translation for Switch statement.

(07 Marks)

- a. Explain run time storage scheme for C++ language. Give the structure of activation record and explain the purpose of each item. (10 Marks)
 - b. What are access links? Explain how are access links determined for finding non local data, what is its drawback. (06 Marks)
 - c. Discuss the performance metrics to be considered while designing a garbage collector.
 (04 Marks)
- 8 a. Discuss the issues in the design of a code generator.

(10 Marks)

b. Apply the Code - Generation algorithm to translate the basic block shown below

$$t = a - b$$

$$u = a - c$$

$$v = t + u$$

$$a = d$$

6

$$d = v + u$$

Assume t, u, v are temporaries, local to the block while a, b, c, d are variables that are line on exit from the block.

(10 Marks)