

A mass is suspended from a spring as shown in Fig.Q8(c). Determine the natural frequency of the system.

(05 Marks)

Module-5

9 a. List different type of damping. Explain any two type of damping. (06 Marks)

b. Determine;

- i) The critical damping coefficient
- ii) The damping factor
- iii) The natural frequency of damping vibrations
- iv) The logarithmic decrement
- v) The ratio of two consecutive amplitudes of a vibrating system which consists of a mass of 25 kg, a spring stiffness 15 kN/m and a damper. The damping provided is 15% of the critical value.

 (10 Marks)

OR

10 a. What is magnification factor? Explain.

(05 Marks)

b. Explain the terms vibration isolation and transmissibility ratio.

(04 Marks)

c. The support of a spring-mass system is vibrating with an amplitude of 5 mm and a frequency of 1150 cycle/min. If the mass is 0.9 kg and the spring has a stiffness of 1960 N/m, determine the amplitude of vibration of the mass. What amplitude will result if a damping factor of 0.2 is included in the system?

(07 Marks)

* * * * *