First Semester M.Tech. Degree Examination, June/July 2019 **Finite Element Method**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Briefly describe the steps in finite element method to solve mechanical engineering problems. (08 Marks)
 - Explain briefly (one two):
 - i) Convergence requirements
 - ii) Compatibility requirements
 - iii) C₀, C₁ and C_n continuity.

(08 Marks)

A simply supported beam is subjected to uniformly distributed load. Determine maximum 2 deflection using Galerpin's method for beam shown in Fig.Q2. (16 Marks)

Module-2

- An axial load P = 300kN is applied at 20°C to the rod shown in Fig.Q3. The temperature is 3 then raised to 60°C.
 - Assemble the 'K' and 'F' matrices
 - Det nodal displacement and element stresses.

(10 Marks)

Fig.Q3(a)

$$E_1 = 70 \times 10^9 \,\text{N/m}^2$$

$$E_2 = 200 \times 10^9 \text{ N/m}^2$$

$$A_1 = 900 \text{ mm}^2$$

$$A_2 = 1200 \text{ mm}^2$$

$$\alpha_1 = 23 \times 10^{-6} \text{ per } ^{\circ}\text{C}$$

$$\alpha_2 = 11.7 \times 10^{-6} \text{ per } ^{\circ}\text{C}.$$

Derive the shape function of a quadratic 1D bar element.

(06 Marks)

OR

4 a. Derive Hermite shape function for a beam element.

(06 Marks)

b. A simply supported beam of span 6m and of uniform flexural rigidity EI = 40000 kN m² subjected to a clockwise couple of 300 kN m at a distance of 4m from left end (Fig.Q4(b)). Find the deflection at point of application of load and internal loads. (10 Marks)

Module-3

- 5 Derive the shape function for :
 - a. Quadratic triangular element (Tria 6)
 - b. Quadratic quadrilateral element (9 noded).

(16 Marks)

OR

- 6 a. Derive the strain displacement relation for a triangular axisymmetric element. (08 Marks)
 - b. Derive the shape function of a serendipity element.

(08 Marks)

Module-4

7 a. List the assumptions made in classical theory of thin plates in bending.

(04 Marks)

b. Derive the strain – displacement matrix for a triangular membrane element.

(12 Marks)

OR

For the truss shown in Fig.Q8, find nodal displacement reactions, stresses, strains. Take E = 210 GPa. (16 Marks)

Module-5

- 9 Derive the consistent mass matrix of:
 - a. Bar element
 - b. Beam element.

(16 Marks)

OR

- Derive the mass matrix of:
 - a. CST element
 - b. Axisymmetric triangular element.

(16 Marks)

* * * * *