

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 5 may, 2014 Page No. 5940-5947

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5941-5947 Page 5941

A Systematic Approach to Cloud Security Using

SeDas Platform
1
Karthik D U,

2
Madhu C,

3
Sushant M

1,2PG Student Dept. Of CS&E, 3Assistant Professor Dept. of CS&E
1
Acharya Institute of Technology, Bangalore-107,

2,3
Alvas Institute of Engineering and Technology, Moodbidri-574227

1
karthik.mtcs.12@acharya.ac.in,

2
madhuc008@gmail.com,

3
sushantm04@gmail.com

Abstract-- Cloud computing is one of the cutting-edge

technologies used by most of the people. Cloud users are

requested to submit the personal private information to the

Cloud by the Internet. When users do this, they hope that Cloud

service provider (CSPs), will provide the privacy for the data.

Self-destructing data mainly aims at providing user’s data

privacy. All the data and decrypting key will get self-destruct

after user specified time without any human intervention. Along

with the privacy we can also be possible to achieve the

Confidentiality and Integrity. The user data will get encrypted

while uploading the file to the cloud using cryptographic

algorithms. In order to provide Integrity we use MD5 or SHA

algorithm to avoid modification of data. In this paper, we present

a system that uses the active storage technique to achieve self-

destruction of data based on the T10 OSD standard. A recovery

mechanism is also provided to the legitimate users to obtain their

data back by requesting to the cloud admin. A new key will be

sent to the legitimate user either to the Email or to Mobile using

this key he has to login to the SeDas platform to get back their

data. So this approach is efficient to use and possible to achieve

all the privacy preserving goals described.

Index terms- Active storage, Cloud Computing, Data Privacy,

Self Destructing Data.

I. INTRODUCTION

With the development of Cloud computing and

popularization of the mobile Internet, Cloud services are

becoming very important for people’s life. People are more or

less requested to submit or post some personal private

information to the Cloud by the Internet When people do this,

they subjectively hope service providers will provide security

policy to protect their data from leaking, so other’s people will

not invade their privacy.

As people rely more and more on the Internet and Cloud

technology, security of their privacy takes high risks. On the

one hand, when data is being processed and stored by the

current computer system or network, it should cache, copy

and archive it. These copies are essential for systems and the

network. However, users don't have knowledge about these

copies and cannot control over their data, so these copies may

leak their privacy. On the other hand, their privacy also can be

leaked via Cloud Service Providers (CSPs’), hackers’

intrusion or some legal actions. These problems present

challenges to protect people’s privacy reconstruction of the

original data. Redundancy allows the receiver to detect a

limited number of errors without reversing the channel to

request the sender for retransmission.

A pioneering study of Vanish [2] supplies a new idea for

protecting privacy of the users. In this approach, a secret key

is divided and stored in a P2P system with distributed hash

tables (DHTs). With joining and exiting of the P2P node, the

system can manage secret keys. According to characteristics

of P2P, after about every eight hours the DHT will refresh

every node. With Shamir Secret Sharing Algorithm [3], when

one cannot get enough parts of a key, it isn’t possible to

decrypt data encrypted with this key, which indicates that the

key is destroyed.

Some special attacks to characteristics of P2P are

challenges of Vanish [2], [4], uncontrolled in how long the

key can survive is also one of the disadvantages for Vanish.

With these disadvantages, this paper presents a solution to

implement a self-destructing data system, or SeDas, which is

based on an active storage framework [6]–[10]. The SeDas

system defines two new modules, a self-destruct method

object that is associated with each secret key part and survival

time parameter for each secret key part. In this case, SeDas

can meet the requirements of self-destructing data with

controllable survival time while users can use this system as a

general object storage system. Our contributions are

summarized as follows.

We focus on the related key distribution algorithm,

Shamir’s algorithm [3], which is used as the core algorithm to

implement client (users) distributing keys in the object storage

system. We use these methods to implement a safety destruct

with equal divided key (Shamir Secret Shares [3]).Based on

the active storage framework; we use an object-based storage

to store and manage the equally divided key. We implemented

a proof-of-concept SeDas prototype. SeDas supports security

erasing files and random encryption keys stored in a hard

disk drive (HDD) or solid-state drive (SSD), respectively.

II.RELEATED WORKS

A. Data Self-Destruct

The self-destructing d a t a system [1] in the Cloud

mailto:1karthik.mtcs.12@acharya.ac.in
mailto:madhuc008@gmail.com

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5940-5947 Page 5942

environment should meet the following requirements: i)

How to destruct all copies of the data simultaneously and

make them unreadable in case the data is out of control?

Destructing the data locally will not work in the Cloud

storage because the number of backups or archives of the

data that is stored in the Cloud may not be known, and some

nodes preserving the backup data have been offline. The data

should become permanently unreadable because of the loss

of encryption key, even if an attacker can obtain an original

copy of that data; ii) No explicit deletion actions by the user,

or any other third-party storing that data; iii) No need to

modify any of the stored or archived copies of that data; iv)

No need of secure hardware but support to completely erase

data in Hard Disk Drive and Solid-State Drive respectively.

ID-based encryption (or identity-based encryption (IBE))

is an important primitive of ID-based cryptography. It is a

type of public-key encryption in which the public-key of a

user is some unique information about the identity of the

user (e.g. a user's email address). This can use the text-value

of the name or domain name as a key or the physical IP

address it translates to the first implementation of an email-

address based PKI was developed by Adi Shamir in 1994,

which allowed users to verify digital signatures using only

public information such as the user's identifier. If a Private

Key Generator (PKG) is compromised, all messages

protected over the lifetime of the public-private key pair

used by that server are also compromised. This makes the

Private Key Generator a high-value target to adversaries.

Tang et al. [12] proposed FADE, which is built upon

cryptographic techniques and assuredly deletes files, so it

isn't possible to recover them to anyone upon revocation of

file access policies. Wang et al. [12] used the public key

based homomorphism authenticator with random mask

technique to achieve a privacy-preserving public auditing

system for Cloud data storage security and uses the

technique of a bilinear aggregate signature to support

handling of multiple auditing tasks. Perlman et al. [13]

present three types of assured delete: expiration time [ttl]

known at file creation, deletion of individual files based on

the explicit request, and custom keys for classes of data.

Vanish [5] is a system for creating messages that

automatically self-destruct after a certain period of time. It

incorporates cryptographic techniques with global-scale,

P2P; distributed hash tables (DHTs): DHTs discard data

older than a certain period of age. The key is permanently

lost, and the encrypted data is permanently unreadable.

Vanish works by encrypting each message with a random

key and storing shares of the key in a large, public DHT.

However, Sybil attacks [4] may compromise the system by

continuously crawling the DHT and saving each stored value

before it ages out, the total cost is two orders of magnitude

less than that mentioned in reference [4] estimated. They can

efficiently recover keys for more than 99% of Vanish

messages by traversing the DHTs within the certain period of

time. Wolchok et a4. [3] concludes that public DHTs like

VuzeDHT [05] probably cannot provide strong enough

security for Vanish. So, Geambasu et al. [10] proposes two

main countermeasures.

Although using both OpenDHT [04] and VuzeDHT might

raise the bar for an hacker, at best it can provide the

maximum security derived from either system: if both DHTs

are not secure, then the hybrid will also be insecure.

OpenDHT is controlled by a single maintainer, who

functions as a trusted third party in this arrangement. It is

also vulnerable to attacks on roughly 200 PlanetLab [09]

nodes on which it runs, most of which are housed low-

security research facilities. Vanish is an interesting approach

to the privacy problem, but, in its current form, it isn’t secure.

To address the problem of Vanish discussed above, in our

previous work [4], we proposed a new scheme, called Safe

Vanish, to prevent hopping attack, which is one kind of the

Sybil attacks [04], by extending the length range of the key

shares to in- crease the attack cost, and did some

improvement on the Shamir Secret Sharing algorithm [03]

implemented in the Vanish system. Furthermore, they

presented an enhanced approach against sniffing attacks by

way of using the public-key crypto system to prevent from

sniffing operations

However, the use of P2P features still is the fatal weakness

both for Vanish and Safe Vanish, because there is a specific

attack against P2P methods (e.g., hopping attacks and Sybil

attacks [5]) .In addition, for the Vanish system, the survival

time of key attainment is determined by DHT system and not

controllable for the user. This paper proposes a distributed

object-based storage system with self-destructing data. The

SeDas system combines a proactive approach in the object

storage techniques and method object, using data processing

capabilities of Object Storage Device to achieve data self-

destruction. User can specify the key survival time ttl value

of distribution key and use the settings of an expanded

interface to export the life cycle of a key, allowing the user to

control the life-cycle of private data.

B .Object-based Storage and Active Storage

Object-based storage (OBS) [08] uses an object-

based storage device (OSD) [14] as the underlying s t o r age

device. The T10 OSD standard [11] is being developed by

the Storage Networking Industry Association (SNIA) and

the INCITS T10 Technical Commit. Each OSD consists of

a CPU, network interface, ROM, RAM, and storage device

(disk or RAID subsystem) and exports a high-level data

object abstraction on the top of device block read/write

interface.

With the emergence of object-based interface, active

storage devices can take advantage of the expressive interface

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5940-5947 Page 5943

to achieve some cooperation between application servers and

storage devices. It can be a file consisting of a set of ordered

logical data blocks, or a database containing many files, or

just a single application record such as a database record

consists of one transaction. Information about data is also

stored as objects, which can include the requirements of

Quality of Service (QoS) [13], security [4], caching, and

backup. Kang et al. [05] even implemented the object-based

model enables storage class memories (SCM) devices to

overcome the disadvantages of the current interfaces and

provided new features such as object-level reliability and

compression. In recent years, many systems, such as Lustre

[9], Panasas [9] and Ceph [9], using object-based technology

have been developed and deployed. Since the data can be

processed in storage devices, people can attempt to include

more functions into a storage device (e.g., OSD) and make it

more intelligent and refer to it as “Intelligent Storage” or

“Active Storage” [10]. For example, Intellegent disk [IDISK]

[09] and SmAS Disk [10] can offload application codes to

disks, but the disks respond to I/O requests of clients

passively. A stream-based programming model has been

proposed for Active Disk [11]–[13], but the stream is allowed

to pass through only one disk let (user specific code).

Today, the active storage system has become one of the

most important research branches in the domain of intelligent

storage systems. For instance, Wickremesinghe et al. [11]

Proposed a model of load-managed active storage, which is

helpful to integrate computation with storage access in a way

that the system can predict the effects of offloading

computation to Active Storage Units (ASU). Hence,

applications can be configured to match hardware capabilities

and load conditions. MVSS [10], a storage system for active

storage devices, provided a single framework to support

various services at the device level. It separated the

deployment of services from file systems and thus allowed

services to be migrated to storage devices.

There have been several efforts to integrate active storage

technology into the T10 OSD standard. References

[5], [7], [8], and [11] all proposed their own

implementation of an active storage framework for the T10

OSD standard. These implementations either are

preliminary or validate their systems on a variety of data

intensive applications and fully demonstrate the advantage

of object-based technology. Our work extends prior

research (such a s Q i n e t a l .’s [5], J o h n et a l .’s

[7], Devulapalli et al.’s [09] and Xie et al.’s [10]) in this area

by considering data self-destruction.

C. Completely Erase Bits of Encryption

In SeDas, erasing files, which include bits (Shamir Secret

Shares [3]) of the encryption key, is not enough when we

delete a file from their storage media; it is not really gone

until the areas of the disk it used are overwritten by new

information. With flash-based solid state-drives (SSDs), the

erased file situation is even more complex due to SSDs

having a very different internal architecture [6].

Several techniques that reliably delete data from hard

disks are available as built-in ATA or SCSI commands,

software tools (such as, DataWipe [7], HDDerase [08]

SDelete [09]), and government standards (e.g., [04]). These

techniques provide effective means of sanitizing HDDs:

either individual files they store or the drive. Software

methods involve overwriting complete or part of the drive

multiple times with patterns specifically designed to obscure

any residual data. For instance, different from erasing files,

which simply mark file space as available where as the Data

Wipe overwrites all data space on a storage device,

overwriting the useful data with garbage data. Based upon the

method used, the overwrite data could be zeros (also known

as “zero-fill”) or could be various random patterns [7]. The

Advanced Technology Attachment [ATA] and SCSI

command sets include “secure erase” commands that should

sanitize an entire disk. Physical destruction and degaussing

are also effective.

SSDs work differently than the HDDs, especially when it

comes to read and write processes on the drive. The most

effective way to delete platter-based HDDs (over- writing

space with data) becomes unusable on SSDs because of their

design. Data on hard disks can be deleted by overwriting it.

This confirms that the data is not recoverable by data

recovery tools. This approach will not work on SSDs as SSDs

differ from HDDs in both the technology they use to store

data and the algorithms they use to manage and access that

data [1].

Analog sanitization is more complex for SSDs than for

hard drives as well. The analysis in [07] suggests that

verifying analog sanitization in memories is challenging

because there are many mechanisms that can imprint remnant

data on the devices. Wei et al. [06] found that, for SSDs,

built-in commands are effective, but designers sometimes

implement them incorrectly.

Overwriting the entire visible address space of an SSD

twice is usually, but it isn't always sufficient to sanitize the

drive; none of the existing hard drive-oriented techniques for

individual file sanitization are effective on SSDs.

To the best of our knowledge, in most of the previous

work aimed at some special applications, example’s database,

multimedia, etc., there is no system-level self-destructing

data in the literature. In our proposed SeDas, we have

implemented a fully functional prototype system.

Based on this prototype, we carry out a series of

experiments to examine the functions of SeDas. The

proposed SeDas does not affect the normal use of storage

system and can meet requirements of self-destructing data

under a survival time by the user controllable key.

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5940-5947 Page 5944

III. DESIGN AND IMPLEMENTATION OF SEDAS

A. SeDas Architecture

Fig. 1. SeDas system architecture

Fig. 1 shows the architecture of SeDas. There are three

parties based on the active storage framework. i) Metadata

server (MDS): MDS is responsible for user management,

server management, session management and file metadata

management. ii) Application node: The application node is a

client to use storage service of the SeDas. iii) Storage node:

Each storage node is an OSD. It consists of two core

subsystems: key value store subsystem and active storage

object (ASO) runtime sub- system. The key value store

subsystem that is based on the object storage component is

used for managing objects stored in storage node: lookup

object read or write object and so on. The object ID is used

as a key. The data associated with it, and attribute are stored

as values.

The Active Storage Object runtime subsystem based on

the active storage agent module in the object-based storage

system is used to process active storage request from users

and manage method objects and policy objects.

B. Active Storage Object

An active storage object derives from a user object and has

a time-to-live (ttl) value property. The ttl value is used to

trigger the self-destruct operation. The time to leave value of

a user object is infinite so that a user object will not be

deleted until a user deletes it manually. The ttl value of an

active storage object is limited so an active object will be

deleted when the value of the associated policy object

Interfaces extended by ActiveStorageObject class are used to

manage ttl value.

The create member function needs another argument for ttl.

If the argument is one , UserObject:: create will be called to

create a user object, else, ActiveStorageOb- ject::create will

call UserObject::create first and associate it with the self-

destruct method object and a self-destruct policy object with

the time to leave value. The getTTL member function is

based on the read_attr function and returns the ttl value of the

active storage object. The setTTL, addTime and decTime

member function are based on the write_attr function and can

be used to modify the ttl value.

C. Self-Destruct Method Object

The kernel code can be executed efficiently; however, a

service method should always be implemented in user space

with these following considerations.

Many libraries such as libc can be used by code in user

space but not in kernel space. Mature tools can be used to

develop software in user space. It is safer to debug code in

user space than in kernel space.

A service method requires a long time to process a

complicated task, so implementation of a service method code

in user space can take advantage of performance of the system.

The system may undergo a crash with an error in kernel code,

but this will not happen if the error occurs in code of user

space.

A self-destruct method object is a service method. It

requires three arguments. The lun argument indicates the

device; the pid argument specifies the partition, and the obj_id

argument specifies the object to be destructed.

D. Data

Process

To use the SeDas system, user’s applications should implement logic

of data process and act as a client node. There are two different logics:

uploading and downloading.

I. Uploading the File (see fig.

2)

When a user uploads a file to a storage system and stores

his key in this SeDas system, he should specify the file, the

key and ttl as arguments for the uploading procedure. Fig. 3

indicates its pseudo-code. In these codes, we assume data and

key has been read from the file. The procedure ENCRYPT

uses a common encrypt algorithm or user-defined encrypt

algorithm. After uploading user's data to storage server, key

shares generated by SSS algorithm will be used to create an

active storage object (ASO) in storage node in the SeDas

system.

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5940-5947 Page 5945

II. Downloading file process:

Any user who has relevant permission can download data

stored in the data-storage system. The data must be decrypted

before use. The entire logic is implemented in code of user’s

application. In the above code, we assume encrypted data and

Meta’s information of the key has been read from the

downloaded file. Prior decrypting, client should try to get key

shares from storage nodes in the SeDas system. If the self-

destruct operation has not been triggered, the users can get

enough key shares to reconstruct the key successfully. If the

associated ASO of that key.

Fig.2 uploading the file (pseudo-code)

E. Data Security Erasing Bits

We must secure delete sensitive data and reduce the

negative impact of OSD performance due to deleting

operation. The pro- portion of required secure deletion of all

the files is not great, so if this part of the file updates operation

changes, then the performance of the OSD will be impacted.

The implementation method is as follows: i) the system

respecify a directory in a special area to store sensitive files ii)

Monitor the FAT and acquire and maintain a list of all

sensitive documents, the logical block address (LBA). iii)

Logical Block Address consists the list of sensitive documents

appears to increase or decrease; the update is sent to the OSD.

iv) The internal synchronization maintains the list of LBA, the

data in the list updates. For SSD, the old data page writes 0,

and then another writes the new data page. When the LBA list

is shorter than that of the file, size is shrinking. At this time,

the old data needs to be corresponding to the page all write. v)

For ordinary Logical Block Address, the system uses the

regular update method. vi) By calling data erasure API, we

can securely delete sensitive files of the specified directory.

Our strategy only changes a few sensitive documents to the

update operation; it will not effect on the operational

performance of the file. In general, the secure delete function

is implied while the OSD read and write performance can be

negligible.

The key value store subsystem that is based on the object

storage component is used for managing objects stored in

storage node: lookup object read or write object and so on.

The object ID is used as a key. The corresponding data and

attribute are stored as values. A service method needs a long

time to process a complex task, so implementing code of a

service method in user space can take advantage of

performance of the system.

IV. OVERALL ARCHITECTURE AND WORKING

FLOW

Fig 3. Overall Architecture

The fig 3 and fig 4 shows the overall architecture and

working flow. The SeDas platform is available within the

cloud. The cloud users first register to the SeDas Platform.

Once users get registered, now they can be able to login,

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5940-5947 Page 5946

and they can perform the file operation, i.e. file upload or

download in the cloud. Now user data will get to encrypt

and decrypt each time when he made the file operation.

After the TTL value, the data will get automatically destroy

and that will be moved to the cache memory. The data

present in the cache will be moved to the virtual memory, a

special directory which is under the control of Admin. If the

user wants that particular data then he has to send the

request to admin.

Fig 4. Working Flow

After the proper authentication of the user’s credentials,

the admin will send that key to the user. The AES algorithm

will provide key and this key will be sent to the admin. User

will login using that key to get back his original data. Here

we are using the MD5 or SHA algorithm while

providing the data to the user in order to provide the

integrity of the file. The key will be sent to both user’s

mail-id and mobile number. Once again, the user has to

login using the recovery key to get back his original data.

Meta data module which consists of some basic

information such as the type of algorithm used for the

encryption, algorithm used for the key generation and key

sharing, type of the database used et.al.

V. RESULTS

1. User registers to SeDas platform.

User login into SeDas platform using username and

password which is sent to the Email id.

2. User uploads the file.

Once the user credentials are verified, he can able to

upload the file to the SeDas platform. The time to live and the

private key for encryption fields should be provided by the

user while uploading the file.

3. Once the TTL expires file cannot be download.

After the timeout occurs the users uploaded files will get

deleted.

4. File downloads after admin approval.

After TTL expires, user has to get the permission from the

admin to recover back his file.

VI. CONCLUSION

Data privacy has become increasingly important in the

Cloud environment. This paper introduced an object-based

methodology for protecting data privacy from attackers who

obtain data, through legal or other means, a user’s stored

data and private decryption keys. The main aim of our

approach is to utilize the essential properties of an active

storage framework based on T10 OSD standard. SeDas causes

sensitive information, such as account numbers, passwords

and notes to irreversibly self-destruct, without any action on

the user’s part. Along with the privacy, this paper will also

provide the integrity by using the MD5 or SHA algorithm

and the confidentiality by encrypting the user data before

entering into the cloud. We can achieve greater security in this

approach by allowing the users to specify the survival time of

the key [TTL] which allows the user to control the life-

1
Karthik D U, IJECS Volume 3 Issue 5 May, 2014 Page No.5940-5947 Page 5947

cycle of the private data.

REFERENCES

[1] Lingfang Zeng, shibin Chen, Qingsong Wei and Dan Feng, “SeDAS: A

Self-Destructing Data System Based On Active Storage Framework,” IEEE
Transaction on Magnetics, vol 49, No.6, June 2013

[2] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy, “Vanish: Increasing

data privacy with self-destructing data,” in Proc. USENIX Security Symp.,

Montreal, Canada, Aug. 2009, pp. 299–315.

[3] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.

612–613, 1979.

[4] S. Wolchok, O. S. Hofmann, N. Heninger, E. W. Felten, J. A. Hal-
derman, C. J. Rossbach, B. Waters, and E. Witchel, “Defeating vanish with

low-cost sybil attacks against large DHEs,” in Proc. Network and
Distributed System Security Symp., 2010.

[5] L. Zeng, Z. Shi, S. Xu, and D. Feng, “Safevanish: An improved data

self-destruction for protecting data privacy,” in Proc. Second Int. Conf. Cloud
Computing Technology and Science (CloudCom), Indianapolis, IN, USA,

Dec. 2010, pp. 521–528.

[6] L. Qin and D. Feng, “Active storage framework for object-based

storage device,” in Proc. IEEE 20th Int. Conf. Advanced Information
Networking and Applications (AINA), 2006.

[7] Y. Zhang and D. Feng, “An active storage system for high perfor-

mance computing,” in Proc. 22nd Int. Conf. Advanced Information
Networking and Applications (AINA), 2008, pp. 644–651.

[8] T. M. John, A. T. Ramani, and J. A. Chandy, “Active storage using

object-based devices,” in Proc. IEEE Int. Conf. Cluster Computing,2008,
pp. 472–478.

[9] A. Devulapalli, I. T. Murugandi, D. Xu, and P. Wyckoff, 2009,

Design of an intelligent object-based storage device [Online]. Available:

http://www.osc.edu/research/network_file/projects/ob- ject/papers/istor-

tr.pdf

[10] S. W. Son, S. Lang, P. Carns, R. Ross, R. Thakur, B. Ozisikyilmaz,

W.-K. Liao, and A. Choudhary, “Enabling active storage on parallel I/O
software stacks,” in Proc. IEEE 26th Symp. Mass Storage Systems and

Technologies (MSST), 2010.

[11] Y. Xie, K.-K. Muniswamy-Reddy, D. Feng, D. D. E. Long, Y. Kang,

Z. Niu, and Z. Tan, “Design and evaluation of oasis: An active storage
framework based on t10 osd standard,” in Proc. 27th IEEE Symp. Mas- sive
Storage Systems and Technologies (MSST), 2011.

[12] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. Perlman, “FADE: Se-
cure overlay cloud storage with file assured deletion,” in Proc.

SecureComm, 2010.

[13] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public

auditing for storage security in cloud computing,” in Proc. IEEE IN-
FOCOM, 2010.

[14]. M. Mesnier, G. Ganger, and E. Riedel, “Object-based storage,”

IEEE Commun. Mag[19] T. Cholez, I. Chrisment, and O. Festor,
“Evaluation of sybil attack pro- tection schemes in kad,” in Proc. 3rd Int. Conf.

Autonomous Infrastruc- ture, Management and Security, Berlin, Germany,

2009, pp. 70–82., vol. 41, no. 8, pp. 84–90, Aug.

http://www.osc.edu/research/network_file/projects/ob-
http://www.osc.edu/research/network_file/projects/ob-

