

18EE34

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 Analog Electronics Circuits

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Draw a double ended clipper circuit and explain the working principle with transfer characteristics. (10 Marks)
 - b. Draw and explain the working of clamper circuit which clamps the positive peak of a signal to zero.

 (10 Marks)

OR

- 2 a. Derive the expression for stability factors S' and S" for fixed bias circuit. (08 Marks)
 - b. A voltage divider biased circuit has $R_1 = 39K\Omega$, $R_2 = 82K\Omega$, $R_C = 3.3K\Omega$, $R_E = 1K\Omega$ and $V_{CC} = 18V$. The silicon transistor used has $\beta = 120$. Find Q-point and stability factor.
 - c. Explain the operation of transistor as switch with suitable circuit and necessary waveforms.

 (05 Marks)

Module-2

a. State and prove Millers theorem.

(06 Marks)

b. Compare the characteristics of CB, CE and CC configurations.

(06 Marks)

c. For the collector feedback configuration having $R_F = 180 \text{K}\Omega$, $R_C = 2.7 \text{K}\Omega$, $C_1 = 10 \mu \text{F}$, $C_2 = 10 \mu \text{F}$, $\beta = 200$, $r_0 = \infty \Omega$ and $V_{CC} = 9 \text{volts}$. Determine the following parameters:

i) re

- ii) z_i
- iii) z_o
- iv) A_v

(08 Marks)

OR

- a. Derive suitable expression to explain the effect of cascading of amplifiers on lower and upper cut off frequencies. (08 Marks)
 - b. Derive equations for miller input capacitance and miller output capacitance. (08 Marks)
 - c. A transistor in CE mode has h-parameters $h_{ie} = 1.1 \text{K}\Omega$, $h_{re} = 2 \times 10^4$, $h_{fe} = 100$ and $h_{oe} = 25 \mu \text{A/V}$. Determine the equivalent CB parameters. (04 Marks)

Module-3

- 5 a. Derive expression for Zi and Ai for a Darlington Emitter follower circuit. (10 Marks)
 - b. Explain the need of a cascading amplifier. Draw and explain the block diagram of two stage cascade amplifier. (06 Marks)
 - c. Write a note on cascade amplifier.

(04 Marks)

OR

- a. List the general characteristics of negative feedback amplifier. (04 Marks)
 b. A given amplifier arrangement has the following voltage gain AV₁ = 10, AV₂ = 20 and AV₃ = 40. Calculate the overall voltage gain and determine the total voltage gain in dBS. (08 Marks)
 - c. For the voltage series feedback amplifier. Derive an expression for output impedance (Resistance). (08 Marks)

Module-4

- 7 a. Show that maximum efficiency of class-B push pull amplifier (power amplifier) circuit is 78.54%. (08 Marks)
 - b. Explain the classification of power amplifier with a neat circuit diagram and waveforms.

 (07 Marks)
 - c. A class-B push pull amplifier operating with $V_{CC} = 25V$ provides a 22V peak signal to 8Ω load. Calculate the circuit efficiency and power dissipated per transistor. (05 Marks)

OR

- 8 a. Draw the circuit of wein bridge oscillator and explain its operation. (10 Marks)
 - b. With a neat circuit diagram and waveform, explain the working principal of crystal oscillator operating in series resonant mode. A crystal has the following parameters L = 0.334H, C = 0.065pF and R = 5.5KΩ. Calculate its resonant frequency.

Module-5

- 9 a. With the help of neat diagram, explain the working and characteristics of N-channel JFET.
 (10 Marks)
 - b. For a self bias JFET circuit, $V_{DD} = +12V$, $R_D = 2.2K\Omega$, $R_G = 1M\Omega$, $R_S = 1K\Omega$, $I_{DSS} = 8mA$, $V_P = -4$ Volts. Determine the following parameters: i) V_{GS} ii) I_D iii) V_{DS} iv) V_S v) V_G vi) V_D (10 Marks)

OR

- 10 a. With neat sketches, explain the operation and characteristics of n-channel depletion type MOSFET. (10 Marks)
 - b. Derive expression for V_{GS}, I_D, V_{DS}, V_D and V_S for a voltage divider bias circuit using FET. (10 Marks)

* * * * *