

15MT63

Sixth Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Power Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define power electronics. Explain the relationship of power electronics to power, electronics and control. Give any three applications of power electronics. (08 Marks)
 - Explain control characteristics of i) GTO ii) MCT iii) SCR iv) SITH. With the help of waveforms and circuit diagrams.

OR

- 2 a. What is power converter? List different types of power converters and mention their functions. (08 Marks)
 - b. With necessary waveforms, explain the switching characteristics of IGBT. (08 Marks)

Module-2

- 3 a. Sketch the static VI characteristics of an SCR and explain:
 - i) Latching current
 - ii) Break over voltage
 - iii) Holding current.

(08 Marks)

b. The input voltage to circuit shown below Fig.Q3(b) is $V_S = 200V$ a load resistance of $R = 10\Omega$ and a load inductance of $L = 50\mu H$. If the damping ratio is 0.7 and discharging current of capacitor is 5A. Determine: i) Values of R_S and R_S ii) Maximum dv/dt. (08 Marks)

OR

- 4 a. Define commutation. Compare natural and forced commutation.
- (08 Marks)
- b. Explain UJT relaxation with the help of circuit diagram and show: $T = RC \log_e \left[\frac{1}{1-n} \right]$.

(08 Marks)

Module-3

- 5 a. An AC voltage controller has a resistive load of 10Ω and rms input voltage 120V, 60Hz. The thyristor switch is ON for n = 25 cycles and OFF for m = 75 cycles. Determine :
 - i) RMS output voltage V₀
 - ii) Input power factor
 - iii) The average and rms current of thyristors.

(08 Marks)

b. With neat circuit diagram and waveforms explain operation of single phase AC voltage controller. (08 Marks)

OR

6 a. What are the advantages of circulating current—mode dual converter?

(04 Marks)

b. Mention applications of AC voltage controller.

(04 Marks)

c. Explain the operation of single phase semi-converter with circuit and waveforms. (08 Marks)

Module-4

7 a. Explain the principle of operation of a step-up chopper.

(08 Marks)

- b. A DC chopper has an input voltage of 200V and a load resistance of 8Ω . The voltage drop across the thyristor is 2V and chopper frequency is 800Hz. Duty cycle is 0.4. Find.
 - i) Average output voltage
 - ii) RMS output voltage
 - iii) Chopper efficiency.

(08 Marks)

OR

8 a. With neat diagram, explain four quadrant operation of a chopper.

(08 Marks)

b. For a type A chopper circuit, $E_{d_c} = 220V$, f = 500Hz. Duty cycle K = 0.3 and load $R = 1\Omega$,

L = 3mH and E = 23 volts. Compare the following quantities.

Check whether the conversion is continuous or not

Average output current

Imax and Imin.

(08 Marks)

Module-5

- 9 a. Explain the principle of single phase half bridge inverter with relevant circuit diagram and waveforms. (10 Marks)
 - b. Write a note on performance parameters of a inverter.
 - i) Harmonic factor of nth harmonic
 - ii) Total harmonic distortion (THD)
 - iii) Distortion factor (DF).

(06 Marks)

OR

10 a. Compare voltage source inverter and current source inverter.

(06 Marks)

b. With neat circuit diagram, explain the operation of a three phase transistorized inverter in 180° conduction mode with star connected R-load. (10 Marks)

* * * * *