

CBCS SCHEME

15MAT31

Third Semester B.E. Degree Examination, Dec.2019/Jan.2020 **Engineering Mathematics – III**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Obtain the Fourier expansion of the function f(x) = x over the interval $(-\pi, \pi)$. Deduce that 1 $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$ (08 Marks)
 - b. The following table gives the variations of a periodic current A over a certain period T:

t (sec)	0	T/6	T/3	T/2	2T/3	5T/6	T
A (amp)	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a direct current part of 0.75amp in the variable current and obtain the amplitude of the first harmonic. (08 Marks)

2 Obtain the Fourier series for the function $f(x) = 2x - x^2$ in $0 \le x \le 2$.

(06 Marks)

Represent the function
$$f(x) = \begin{cases} x, & \text{for } 0 < x < \pi/2 \\ \pi/2 & \text{for } \pi/2 < x < \pi \end{cases}$$

in a half range Fourier sine series.

(05 Marks)

c. Determine the constant term and the first cosine and sine terms of the Fourier series expansion of y from the following data:

x°	0	45	90	135	180	225	270	315
У	2	3/2	1	1/2	0	1/2	1	3/2

(05 Marks)

a. Find the complex Fourier transform of the function

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases} \text{ Hence evaluate } \int_{0}^{\infty} \frac{\sin x}{x} dx . \tag{06 Marks}$$

b. If
$$u(z) = \frac{2z^2 + 3z + 12}{(z-1)^4}$$
 show that $u_0 = 0$ $u_1 = 0$ $u_2 = 2$ $u_3 = 11$. (05 Marks)

Obtain the Fourier cosine transform of the function

$$f(x) = \begin{cases} 4x, & 0 < x < 1 \\ 4 - x, & 1 < x < 4 \\ 0 & x > 4 \end{cases}$$
 (05 Marks)

OR

4 a. Obtain the Z-transform of $cosn\theta$ and $sinn\theta$.

(06 Marks)

b. Find the Fourier sine transform of $f(x) = e^{-|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1 + x^{2}} dx$ m > 0.

(05 Marks)

c. Solve by using Z-transforms $y_{n+2} + 2y_{n+1} + y_n = n$ with $y_0 = 0 = y_1$.

(05 Marks)

Module-3

5 a. Fit a second degree parabola $y = ax^2 + bx + c$ in the least square sense for the following data and hence estimate y at x = 6. (06 Marks)

 x
 1
 2
 3
 4
 5

 y
 10
 12
 13
 16
 19

b. Obtain the lines of regression and hence find the coefficient of correlation for the data:

X	1	3	4	2	5	8 9	10	13	15	
у	8	6	10	8	12	16 16	10	32	32	

(05 Marks)

c. Use Newton-Raphson method to find a real root of $x\sin x + \cos x = 0$ near $x = \pi$. Carryout the iterations upto four decimal places of accuracy. (05 Marks)

OR

6 a. Show that a real root of the equation tanx + tanhx = 0 lies between 2 and 3. Then apply the Regula Falsi method to find third approximation. (06 Marks)

b. Compute the coefficient of correlation and the equation of the lines of regression for the

X	1	2	3	4	5	6	7
У	9	8	10	12	11	13	14

(05 Marks)

c. Fit a curve of the form $y = ae^{bx}$ for the data:

X	0	2	4
у	8.12	10	31.82

(05 Marks)

Module-4

7 a. From the following table find the number of students who have obtained:

i) Less than 45 marks

ii) Between 40 and 45 marks.

TO that is marks.								
Marks	30-40	40-50	50-60	60-70	70-80			
Number of students	31	42	51	35	31			

b. Construct the interpolating polynomial for the data given below using Newton's general interpolation formula for divided differences and hence find y at x = 3.

X	2	4	5	6	8	10
У	10	96	196	350	868	1746

(05 Marks)

(06 Marks)

c. Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by Weddle's rule. Taking seven ordinates. Hence find $\log_e 2$. (05 Marks)

OR

8 a. Use Lagrange's interpolation formula to find f(4) given below.

(06 Marks)

X	0	2	3	6
f(x)	-4	2	14	158

b. Use Simpson's $3/8^{th}$ rule to evaluate $\int_{1}^{4} e^{1/x} dx$.

(05 Marks)

c. The area of a circle (A) corresponding to diameter (D) is given by

D	80	85	90	95	100
A	5026	5674	6362	7088	7854

Find the area corresponding to diameter 105 using an appropriate interpolation formula.

(05 Marks)

Module-5

- 9 a. Evaluate Green's theorem for $\phi_c(xy + y^2) dx + x^2 dy$ where c is the closed curve of the region bounded by y = x and $y = x^2$. (06 Marks)
 - b. Find the extremal of the functional $\int_{a}^{b} (x^2 + y^2 + 2y^2 + 2xy) dx$. (05 Marks)
 - c. Varity Stoke's theorem for $\vec{F} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ C is its boundary. (05 Marks)

OR

- 10 a. Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y1} \right) = 0$. (06 Marks)
 - b. If $\vec{F} = 2xy\hat{i} + y^2z\hat{j} + xz\hat{k}$ and S is the rectangular parallelepiped bounded by x = 0, y = 0, z = 0, x = 2, y = 1, z = 3. Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$. (05 Marks)
 - c. Prove that the shortest distance between two points in a plane is along the straight line joining them or prove that the geodesics on a plane are straight lines. (05 Marks)

* * * * *