Gulf Journal of Mathematics
Vol 4, Issue 1 (2016) 65-74

PROJECTIVE EQUIVALENCE BETWEEN TWO FAMILIES OF FINSLER METRICS

PRADEEP KUMAR ${ }^{1 *}$, MADHU T S ${ }^{2}$ AND M RAMESHA ${ }^{3}$

Abstract

In this paper, we find the necessary and sufficient condition to characterize the projective relation between two subclasses of (α, β)-metrics $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ on a manifold M with dimension $n>2$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non zero 1 -forms.

1. Introduction

In Finsler geometry, two Finsler metrics L and \bar{L} on a manifold M are said to be projectively related if $G^{i}=\bar{G}^{i}+P y^{i}$, where G^{i} and \bar{G}^{i} are the geodesic coefficients of F and \bar{F} respectively and $P=P(x, y)$ is a scalar function on the slit tangent bundle $T M_{0}$. In this case, any geodesic of the first is also geodesic for the second and viceversa. The projective changes between two Finsler spaces have been studied by [2], [3], [9], [10], [14], [15].
(α, β)-metrics form a special and very important classes of Finsler metrics which can be expressed in the form $L=\alpha \phi(s): s=\frac{\beta}{\alpha}$, where α is a Riemannian metric, β is a 1 -form and ϕ is a C^{∞} positive function on the definite domain. In particular, when $\phi=1 / s$, the Finsler metric $L=\frac{\alpha^{2}}{\beta}$ is called Kropina metric. Kropina metric was first introduced by L. Berwald in connection with two dimensional Finsler space with rectilinear extremal and was investigated by V. K. Kropina [5]. They together with Randers metric are C-reducible [8]. However, Randers metric are regular Finsler metric but Kropina metric is non-regular Finsler metric. Kropina metric seem to be among the simplest nontrivial Finsler metric with many interesting applications in physics, electron optics with a magnetic field, dissipative mechanics and irreversible thermodynamics [4], [11]. Also, there are interesting applications in relativistic field theory, evolution and developmental biology.

Based on Stavrino's work on Finslerian structure of anisotropic gravitational field [12], we know that the anisotropy is an issue of the background radiation for all possible (α, β)-metrics. Then the 1 -form β represents the same direction of the observed anisotropy of the microwave background radiation. That is, if two

[^0](α, β)-metrics $L=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ and $\bar{L}=\bar{\alpha} \phi\left(\frac{\bar{\beta}}{\bar{\alpha}}\right)$ are the same anisotropy directions (or, they have the same axis rotation to their indicatrices), then their 1 -form β and $\bar{\beta}$ are collinear, there is a function $\mu \in C^{\infty}(M)$ such that $\beta(x, y)=\mu \bar{\beta}(x, y)$. By [3], for the projective equivalence between a general (α, β)-metric and a Kropina metric, we have the following lemma

Lemma 1.1. Let $L=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ be an ($\left.\alpha, \beta\right)$-metric on n-dimensional manifold $M(n>2)$ satisfying that β is not parallel with respect to $\alpha, d b \neq 0$ everywhere (or) $b=$ constant and L is not of Randers type. Let $\bar{L}=\frac{\bar{\alpha}^{2}}{\bar{\beta}}$ be a Kropina metric on the manifold M, where $\bar{\alpha}=\lambda(x) \alpha$ and $\bar{\beta}=\mu(x) \beta$. Then L is Projectively equivalent to \bar{L} if and only if the following equations holds

$$
\begin{align*}
{\left[1+\left(k_{1}+k_{2} s^{2}\right) s^{2}+k_{3} s^{2}\right] \phi^{\prime \prime} } & =\left(k_{1}+k_{2} s^{2}\right)\left(\phi-s \phi^{\prime}\right), \tag{1.1}\\
G_{\alpha}^{i} & =\bar{G}_{\bar{\alpha}}^{i}+\theta y^{i}-\sigma\left(k_{1} \alpha^{2}+k_{2} \beta^{2}\right) b^{i}, \tag{1.2}\\
b_{i \mid j} & =2 \sigma\left[\left(1+k_{1} b^{2}\right) a_{i j}+\left(k_{2} b^{2}+k_{3}\right) b_{i} b_{j}\right], \tag{1.3}\\
\bar{s}_{i j} & =\frac{1}{\bar{b}^{2}}\left(\bar{b}_{i} \bar{s}_{j}-\bar{b}_{j} \bar{s}_{i}\right), \tag{1.4}
\end{align*}
$$

where $\sigma=\sigma(x)$ is a scalar function and k_{1}, k_{2} and k_{3} are constants. In this case both $L=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ are Douglas metrics.

The purpose of this paper is to study the projective equivalence between two families of Finsler metrics. The main results of the paper are as follows:

Theorem 1.2. Let $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ be a (α, β)-metric and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ be a Kropina metric on a n-dimensional manifold $M(n>2)$ where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two nonzero collinear 1-forms. Then L is projectively equivalent to \bar{L} if and only if they are Douglas metrics and the geodesic co-efficient of α and $\bar{\alpha}$ have the following relation

$$
\begin{equation*}
G_{\alpha}^{i}+2 \alpha^{2} \tau b^{i}=\bar{G}_{\bar{\alpha}}^{i}+\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right)+\theta y^{i} \tag{1.5}
\end{equation*}
$$

where $b^{i}=a^{i j} b_{j}, \bar{b}^{i}=\bar{a}^{i j} \bar{b}_{j}, \bar{b}^{2}=\left\|\bar{\beta}^{2}\right\|_{\bar{\alpha}}, \tau=\tau(x)$ is scaler function and $\theta=\theta_{i} y^{i}$ is a 1 -form on M.

By [6] and [7], we obtain immediately from theorem (1.2), that
Proposition 1.3. Let $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ be an (α, β)-metric and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ be a Kropina metric on a n-dimensional manifold $M(n>2)$ where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two nonzero collinear 1 -forms. Then F is projectively equivalent to \bar{F} if and only if the following holds

$$
\begin{align*}
G_{\alpha}^{i}+2 \alpha^{2} \tau b^{i} & =\bar{G}_{\bar{\alpha}}^{i}+\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right)+\theta y^{i} \tag{1.6}\\
b_{i \mid j} & =2 \tau\left\{\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right\} \tag{1.7}\\
\bar{s}_{i j} & =\frac{1}{\bar{b}^{2}}\left(\bar{b}_{i} \bar{s}_{j}-\bar{b}_{j} \bar{s}_{i}\right) \tag{1.8}
\end{align*}
$$

where $b_{i \mid j}$ denote the coefficient of the covariant derivative of β with respect to α.

2. Preliminaries

We say that a Finsler metric is projectively related to another Finsler metric if they have the same geodesic as point sets. In Riemannian geometry, two Riemannian metrics α and $\bar{\alpha}$ are projectively related if and only if their spray coefficients have the relation [2]

$$
\begin{equation*}
G_{\alpha}^{i}=G_{\bar{\alpha}}^{i}+\lambda_{x^{k}} y^{k} y^{i} \tag{2.1}
\end{equation*}
$$

where $\lambda=\lambda(x)$ is a scalar function on the based manifold and $\left(x^{i}, y^{i}\right)$ denotes the local coordinates in the tangent bundle $T M$.

Two Finsler metrics F and \bar{F} on a manifold M are said to be projectively related if and only if their spray coefficients have the relation [2]

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P(y) y^{i} \tag{2.2}
\end{equation*}
$$

where $P(y)$ is a scalar function on $T M \backslash\{0\}$ and homogeneous of degree one in y.
For a given Finsler metric $L=L(x, y)$, the geodesics of L satisfy the following ODE:

$$
\frac{d^{2} x^{i}}{d t^{2}}+2 G^{i}\left(x, \frac{d x}{d t}\right)=0
$$

where $G^{i}=G^{i}(x, y)$ is called the geodesic coefficient, which is given by

$$
G^{i}=\frac{1}{4} g^{i l}\left\{\left[F^{2}\right]_{x^{m} y^{l}} y^{m}-\left[F^{2}\right]_{x^{l}}\right\}
$$

Let $\phi=\phi(s),|s|<b_{0}$, be a positive C^{∞} function satisfying the following

$$
\begin{equation*}
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0, \quad\left(|s| \leq b<b_{0}\right) \tag{2.3}
\end{equation*}
$$

If $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i} y^{i}$ is 1-form satisfying $\left\|\beta_{x}\right\|_{\alpha}<b_{0}, \forall x \in M$, then $F=\alpha \phi(s), s=\beta / \alpha$, is called an (regular) (α, β) metric. In this case, the fundamental form of the metric tensor induced by L is positive definite.

Let $\nabla \beta=b_{i \mid j} d x^{i} \otimes d x^{j}$ be covariant derivative of β with respect to α.
Denote $r_{i j}=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right)$ and $s_{i j}=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right)$.
Note that β is closed if and only if $s_{i j}=0$ [13]. Let $s_{j}=b^{i} s_{i j}, \quad s_{j}^{i}=a^{i l} s_{l j}$, $s_{0}=s_{i} y^{i}, s_{0}^{i}=s_{j}^{i} y^{j}$ and $r_{00}=r_{i j} y^{i} y^{j}$.

The relation between the geodesic coefficients G^{i} of L and geodesic coefficient G_{α}^{i} of α is given by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\left\{-2 Q \alpha s_{0}+r_{00}\right\}\left\{\Psi b^{i}+\Theta \alpha^{-1} y^{i}\right\} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\Theta & =\frac{\phi \phi^{\prime}-s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)}{2 \phi\left\{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right\}}, \\
Q & =\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \\
\Psi & =\frac{\phi^{\prime \prime}}{2\left\{\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right\}} .
\end{aligned}
$$

For a Kropina metric $F=\frac{\alpha^{2}}{\beta}$, it is very easy to see that it is not a regular (α, β)-metric but the relation $\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0$ is still true for $|s|>0$.
In [6], the authors characterized the (α, β)-metrics of Douglas type.
Lemma 2.1. [6]: Let $F=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ be a regular (α, β)-metric on an n-dimensional manifold $M(n>2)$. Assume that β is not parallel with respect to α and $d b \neq 0$ every where or $b=$ constant, and F is not of Randers type. Then F is a Douglas metric if and only if the function $\phi=\phi(s)$ with $\phi(0)=1$ satisfies following

$$
\begin{equation*}
\left[1+\left(k_{1}+k_{2} s^{2}\right) s^{2}+k_{3} s^{2}\right] \phi^{\prime \prime}=\left(k_{1}+k_{2} s^{2}\right)\left(\phi-s \phi^{\prime}\right), \tag{2.5}
\end{equation*}
$$

and β satisfies

$$
\begin{equation*}
b_{i \mid j}=2 \sigma\left[\left(1+k_{1} b^{2}\right) a_{i j}+\left(k_{2} b^{2}+k_{3}\right) b_{i} b_{j}\right], \tag{2.6}
\end{equation*}
$$

where $b^{2}=\|\beta\|_{\alpha}^{2}$ and $\sigma=\sigma(x)$ is a scalar function and k_{1}, k_{2} and k_{3} are constants with $\left(k_{2}, k_{3}\right) \neq(0,0)$.

For a Kropina metric, we have the following
Lemma 2.2. [7]: let $L=\frac{\alpha^{2}}{\beta}$ be Kropina metric on an n-dimensional manifold M. Then
(i) $(n \geq 3)$ Kropina metric L with $b^{2} \neq 0$ is Douglas metric if and only if

$$
\begin{equation*}
s_{i k}=\frac{1}{b^{2}}\left(b_{i} s_{k}-b_{j} s_{i}\right) . \tag{2.7}
\end{equation*}
$$

(ii) $(n=2)$ Kropina metric L is a Douglas metric.

Definition 2.3. [2]: Let

$$
\begin{equation*}
D_{j k l}^{i}=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G^{i}-\frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i}\right), \tag{2.8}
\end{equation*}
$$

where G^{i} are the spray coefficients of L. The tensor $D=D_{j k l}^{i} \partial_{i} \otimes d x^{j} \otimes d x^{k} \otimes d x^{l}$ is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

We know that the Douglas tensor is a projective invariant. Note that the spray coefficients of a Riemannian metric are quadratic forms and one can see that the Douglas tensor vanishes from (2.8). This shows that Douglas tensor is a non-Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding quantities of the metric \bar{L}.
Now, first we compute the Douglas tensor of a general (α, β)-metric.
Let

$$
\begin{equation*}
\bar{G}^{i}=G_{\alpha}^{i}+\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i} . \tag{2.9}
\end{equation*}
$$

Then (2.4) becomes

$$
G^{i}=\bar{G}^{i}+\Theta\left\{-2 Q \alpha s_{0}+r_{00}\right\} \alpha^{-1} y^{i} .
$$

Clearly, G^{i} and \bar{G}^{i} are projective equivalent according to (2.2), they have the same Douglas tensor.
Let

$$
\begin{equation*}
T^{i}=\alpha Q s_{0}^{i}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i} \tag{2.10}
\end{equation*}
$$

Then $\bar{G}^{i}=G_{\alpha}^{i}+T^{i}$. Thus

$$
\begin{align*}
D_{j k l}^{i} & =\bar{D}_{j k l}^{i} \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G_{\alpha}^{i}-\frac{1}{n+1} \frac{\partial G_{\alpha}^{m}}{\partial y^{m}} y^{i}+T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) \\
& =\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i}\right) . \tag{2.11}
\end{align*}
$$

To compute (2.11) explicitly, we use the following identities

$$
\alpha_{y^{k}}=\alpha^{-1} y_{k}, s_{y^{k}}=\alpha^{-2}\left(b_{k} \alpha-s y_{k}\right),
$$

where $y_{i}=a_{i l} y^{l}$. Hereafter, $\alpha_{y^{k}}$ means $\frac{\partial \alpha}{\partial y^{k}}$. Then

$$
\left[\alpha Q s_{0}^{m}\right]_{y^{m}}=\alpha^{-1} y_{m} Q s_{0}^{m}+\alpha^{-2} Q^{\prime}\left[b_{m} \alpha^{2}-\beta y_{m}\right] s_{0}^{m}=Q^{\prime} s_{0}
$$

and
$\left[\Psi\left(-2 Q \alpha s_{0}+r_{00}\right) b^{m}\right]_{y^{m}}=\Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right]+2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right]$
, where $r_{j}=b^{i} r_{i j}$ and $r_{0}=r_{i} y^{i}$. Thus from (2.10), we have

$$
\begin{equation*}
T_{y^{m}}^{m}=Q^{\prime} s_{0}+\Psi^{\prime} \alpha^{-1}\left(b^{2}-s^{2}\right)\left[r_{00}-2 Q \alpha s_{0}\right]+2 \Psi\left[r_{0}-Q^{\prime}\left(b^{2}-s^{2}\right) s_{0}-Q s s_{0}\right] \tag{2.12}
\end{equation*}
$$

Let L and \bar{L} be two (α, β)-metrics, we assume that they have the same Douglas tensor, i.e. $D_{j k l}^{i}=\bar{D}_{j k l}^{i}$.
From (2.8) and (2.11), we have

$$
\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i}\right)=0
$$

Then there exists a class of scalar function $H_{j k}^{i}=H_{j k}^{i}(x)$, such that

$$
\begin{equation*}
H_{00}^{i}=T^{i}-\bar{T}^{i}-\frac{1}{n+1}\left(T_{y^{m}}^{m}-\bar{T}_{y^{m}}^{m}\right) y^{i} \tag{2.13}
\end{equation*}
$$

where $H_{00}^{i}=H_{j k}^{i}(x) y^{j} y^{k}, T^{i}$ and $T_{y^{m}}^{m}$ are given by (2.10) and (2.12) respectively.

3. Projective equivalence between Special (α, β)-metric and Kropina metric

In this section, we find the projective relation between special (α, β)-metric $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ and Kropina metric $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ on a same underlying manifold M of dimension $n>2$.

For (α, β)-metric $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$, one can prove by (2.3) that L is a regular Finsler metric if and only if 1 -form β satisfies the condition $\left\|\beta_{x}\right\|_{\alpha}<1$ for any $x \in M$. The geodesic coefficients are given by (2.4) with

$$
\begin{align*}
\theta & =\frac{1-3 s^{2}-2 s^{3}}{\left(1+2 s+s^{2}\right)\left(1+2 b^{2}-3 s^{2}\right)} \\
Q & =\frac{2+2 s}{1-s^{2}} \\
\Psi & =\frac{1}{1+2 b^{2}-3 s^{2}} \tag{3.1}
\end{align*}
$$

For Kropina metric $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$, the geodesic coefficients are given by (2.4) with

$$
\begin{equation*}
\bar{Q}=-\frac{1}{2 s}, \quad \bar{\theta}=-\frac{s}{\bar{b}^{2}}, \quad \bar{\Psi}=\frac{1}{2 \bar{b}^{2}} . \tag{3.2}
\end{equation*}
$$

In this paper, we assume that $\lambda=\frac{1}{n+1}$. Since the Douglas tensor is projective invariant, we have

Theorem 3.1. Let $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ be an (α, β)-metric and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ be an Kropina metric on an n-dimensional manifold $M(n>2)$ where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero 1 -forms. Then L and \bar{L} have the same Douglas tensors if and only if they are all Douglas metrics.

Proof: First we prove the sufficient condition.
Let L and \bar{L} be Douglas metrics and corresponding Douglas tensors be $D_{j k l}^{i}$ and $\bar{D}^{i}{ }_{j k l}$. Then by the definition of Douglas metric, we have $D_{j k l}^{i}=0$ and $\bar{D}^{i}{ }_{j k l}=0$, that is both F and \bar{F} have same Douglas tensor, then (2.7) holds. Plugging (3.1) and (3.2) into (2.13), we have

$$
\begin{align*}
H_{00}^{i} & =\frac{A^{i} \alpha^{9}+B^{i} \alpha^{8}+C^{i} \alpha^{7}+D^{i} \alpha^{6}+E^{i} \alpha^{5}+F^{i} \alpha^{4}+G^{i} \alpha^{3}+H^{i} \alpha^{2}+I^{i}}{J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N} \\
& +\frac{\bar{A}^{i} \bar{\alpha}^{2}+\bar{B}^{i}}{2 \bar{b}^{2} \bar{\beta}}, \tag{3.3}
\end{align*}
$$

where

$$
\begin{aligned}
A^{i} & =2\left(1+2 b^{2}\right)\left\{\left(1+2 b^{2}\right) s_{0}^{i}-2 b^{i} s_{0}\right\}, \\
B^{i} & =\left(1+2 b^{2}\right)\left\{2\left(1+2 b^{2}\right) \beta s_{0}^{i}-4 \beta s_{0} b^{i}+r_{00} b^{i}-2 \lambda y^{i}\left(r_{0}+s_{0}\right)\right\}, \\
C^{i} & =-2 \beta\left[\beta\left(1+2 b^{2}\right)\left\{6+\left(1+2 b^{2}\right) s_{0}^{i}-2 \beta\left(4+2 b^{2}\right) s_{0} b^{i}-12 b^{2} \lambda s_{0} y^{i}\right\}\right], \\
D^{i} & =\beta\left[-\beta^{2}\left\{\left(2+4 b^{2}\right)\left(7+2 b^{2}\right) s_{0}^{i}-8\left(2+b^{2}\right) s_{0} b^{i}\right\}+\beta\left\{\left(5+4 b^{2}\right) r_{00} b^{i}\right.\right. \\
& \left.\left.-2 \lambda y^{i}\left(\left(5+4 b^{2}\right) r_{0}+\left(5+16 b^{2}\right) s_{0}\right)\right\}-6 b^{2} r_{00} \lambda y^{i}\right], \\
E^{i} & =6 \beta^{3}\left[\beta\left\{\left(1+4 b^{2}\right) s_{0}^{i}+2 s_{0} b^{i}\right\}-4 \lambda s_{0} y^{i}\left(1+b^{2}\right)\right], \\
F^{i} & =\beta^{3}\left[6 \beta^{2}\left\{\left(5+4 b^{2}\right) s_{0}^{i}+2 s_{0} b^{i}\right\}+12 b^{2} r_{00} \lambda y^{i}+\beta\left\{\left(7+2 b^{2}\right) r_{00} b^{i}\right.\right. \\
& \left.\left.-2 \lambda y^{i}\left(\left(7+2 b^{2}\right) r_{0}+\left(19+20 b^{2}\right) s_{0}\right)\right\}\right], \\
G^{i} & =-6 \beta^{5}\left[3\left\{\beta s_{0}^{i}+2 s_{0} \lambda y^{i}\right\}-10 \lambda s_{0} y^{i}\right], \\
H^{i} & =-3 \beta^{5}\left[6 \beta^{2} s_{0}^{i}+\left(4+2 b^{2}\right) r_{00} \lambda y^{i}+\beta\left\{r_{00} b^{i}-2 \lambda y^{i}\left(r_{0}+5 s_{0}\right)\right\}\right], \\
I^{i} & =6 \beta^{7} r_{00} \lambda y^{i}, \\
J & =\left(1+2 b^{2}\right)^{2}, \\
K & =-4 \beta^{2}\left(1+2 b^{2}\right)\left(2+b^{2}\right), \\
L & =\beta^{4}\left[\left(1+2 b^{2}\right)\left(13+2 b^{2}\right)+9\right], \\
M & =-12 \beta^{6}\left(b^{2}+2\right), \\
N & =9 \beta^{8}, \\
\bar{A}^{i} & =\bar{b}^{2} \bar{s}_{0}^{i}-\bar{b}^{i} \bar{s}_{0}, \\
\bar{B}^{i} & =\bar{\beta}^{2}\left[2 \lambda y^{i}\left(\bar{r}_{0}+\bar{s}_{0}\right)-\bar{b}^{i} \bar{r}_{00}\right] .
\end{aligned}
$$

Further (3.3) is equivalent to

$$
\begin{align*}
& \left(A^{i} \alpha^{9}+B^{i} \alpha^{8}+C^{i} \alpha^{7}+D^{i} \alpha^{6}+E^{i} \alpha^{5}+F^{i} \alpha^{4}+G^{i} \alpha^{3}+H^{i} \alpha^{2}+I^{i}\right)\left(2 \bar{b}^{2} \bar{\beta}\right)+\left(\bar{A}^{i} \bar{\alpha}^{2}+\bar{B}^{i}\right) \\
& \times\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right)=H_{00}^{i}\left(2 \bar{b}^{2} \bar{\beta}\right)\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right) . \tag{3.4}
\end{align*}
$$

Replacing $\left(y^{i}\right)$ by $\left(-y^{i}\right)$ in (3.4), we get

$$
\begin{align*}
& \left(-A^{i} \alpha^{9}+B^{i} \alpha^{8}-C^{i} \alpha^{7}+D^{i} \alpha^{6}-E^{i} \alpha^{5}+F^{i} \alpha^{4}-G^{i} \alpha^{3}+H^{i} \alpha^{2}+I^{i}\right)\left(-2 \bar{b}^{2} \bar{\beta}\right)-\left(\bar{A}^{i} \bar{\alpha}^{2}+\bar{B}^{i}\right) \\
& \times\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right)=-H_{00}^{i}\left(2 \bar{b}^{2} \bar{\beta}\right)\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right) \tag{3.5}
\end{align*}
$$

Adding (3.4) and (3.5) we obtain

$$
\begin{aligned}
& \left(A^{i} \alpha^{9}+C^{i} \alpha^{7}+E^{i} \alpha^{5}+G^{i} \alpha^{3}\right)\left(\bar{b}^{2} \bar{\beta}\right)=0 \\
& A^{i} \alpha^{9}+C^{i} \alpha^{7}+E^{i} \alpha^{5}+G^{i} \alpha^{3}=0 .
\end{aligned}
$$

Therefore we conclude that (3.3) is equivalent to

$$
\begin{equation*}
H_{00}^{i}=\frac{B^{i} \alpha^{8}+D^{i} \alpha^{6}+F^{i} \alpha^{4}+H^{i} \alpha^{2}+I^{i}}{J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N}+\frac{\bar{A}^{i} \bar{\alpha}^{2}+\bar{B}^{i}}{2 \bar{b}^{2} \bar{\beta}} \tag{3.6}
\end{equation*}
$$

and (3.6) is equivalent to

$$
\begin{align*}
& \left(B^{i} \alpha^{8}+D^{i} \alpha^{6}+F^{i} \alpha^{4}+H^{i} \alpha^{2}+I^{i}\right)\left(2 \bar{b}^{2} \bar{\beta}\right)+\left(\bar{A}^{i} \bar{\alpha}^{2}+\bar{B}^{i}\right)\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right) \\
& =H_{00}^{i}\left(2 \bar{b}^{2} \bar{\beta}\right)\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right) \tag{3.7}
\end{align*}
$$

In the above equation (3.7), we can see that $\bar{A}^{i} \bar{\alpha}^{2}\left(J \alpha^{8}+k \alpha^{6}+L \alpha^{4}+M \alpha^{2}+N\right)$ can be divided by $\bar{\beta}$. Since $\beta=\mu \bar{\beta}$, then $\bar{A}^{i} \bar{\alpha}^{2} J \alpha^{8}$ can be divided by $\bar{\beta}$. Because $\bar{\beta}$ is prime with respect to α and $\bar{\alpha}$. Therefore $\bar{A}^{i}=\bar{b}^{2} \bar{s}_{0}^{i}-\bar{b}^{i} \bar{s}_{0}$ can be divided by $\bar{\beta}$. Hence there is a scalar function $\psi^{i}(x)$ such that

$$
\begin{equation*}
\bar{b}^{2} \bar{s}_{0}^{i}-\bar{b}^{i} \bar{s}_{0}=\bar{\beta} \psi^{i} . \tag{3.8}
\end{equation*}
$$

Transvecting (3.8) by $\bar{y}_{i}=\bar{a}_{i j} y^{j}$, we get $\psi^{i}(x)=-\bar{s}^{i}$. Thus we have

$$
\begin{equation*}
\bar{s}_{i j}=\frac{1}{\bar{b}^{2}}\left(\bar{b}_{i} \bar{s}_{j}-\bar{b}_{j} \bar{s}_{i}\right) . \tag{3.9}
\end{equation*}
$$

Thus by lemma (2.2), $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ is a Douglas metrics. i.e., Both $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ are Douglas metrics.

If $n=2, \bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ is a Douglas metric by lemma (2.2). Thus L and \bar{L} have the same Douglas tensors means that they are Douglas metrics. Thus $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ be an special (α, β)-metric and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ be a Kropina metric on an n-dimensional manifold $M(n \geq 2)$, where α and $\bar{\alpha}$ are Riemannian metric, β and $\bar{\beta}$ are two non zero collinear 1-forms. Then L and \bar{L} have same Douglas tensors if and only if they are Douglas metrics. This completes the proof of theorem (3.1).

4. Proof. of Theorem (1.2)

First we prove the necessary condition:
Since Douglas tensor is an invariant under projective changes between two Finsler metrics, If L is projectively related to \bar{L}, then they have the same Douglas tensor. According to theorem (3.1), we obtain that both L and \bar{L} are Douglas metrics. By [3], It is well know that Kropina metric $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ with $b^{2} \neq 0$ is a Douglas metric if and only if $s_{i k}=\frac{1}{b^{2}}\left(b_{i} s_{k}-b_{k} s_{i}\right)$ and also it has it has been proved that by [5], we know that (α, β)-metric, $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ is a Douglas metric if and only if

$$
\begin{equation*}
b_{i \mid j}=2 \tau\left[\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right], \tag{4.1}
\end{equation*}
$$

where $\tau=\tau(x)$ is a scalar function on M. In this case, β is closed. Plugging (4.1) and (3.1) into (2.4), we have

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\left(\frac{\alpha^{3}-3 \alpha \beta^{2}-2 \beta^{3}}{\alpha^{2}+\alpha \beta+\beta^{2}}\right) 2 \tau y^{i}+2 \tau \alpha^{2} b^{i} \tag{4.2}
\end{equation*}
$$

Again plugging (4.2) and (3.2) into (2.4), we have

$$
\begin{equation*}
\bar{G}^{i}=\bar{G}_{\bar{\alpha}}^{i}-\frac{1}{2 \bar{b}^{2}}\left[-\bar{\alpha}^{2} \bar{s}^{i}+\left(2 \bar{s}_{0} y^{i}-\bar{r}_{00} \bar{b}^{i}\right)+2\left(\frac{\bar{r}_{00} \bar{\beta} y^{i}}{\bar{\alpha}^{2}}\right)\right] . \tag{4.3}
\end{equation*}
$$

Since L is Projectively equivalent to \bar{L}, then there exist a scalar function $P=$ $P(x, y)$ on $T M \backslash\{0\}$ such that

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+P y^{i} . \tag{4.4}
\end{equation*}
$$

By (4.2), (4.3) and (4.4), we have

$$
\begin{equation*}
\left[P-\left(\frac{\alpha^{3}-3 \alpha \beta^{2}-2 \beta^{3}}{\alpha^{2}+2 \alpha \beta+\beta^{2}}\right) 2 \tau-\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\alpha^{2}}\right)\right] y^{i}=G_{\alpha}^{i}-\bar{G}_{\bar{\alpha}}^{i}+2 \alpha^{2} \tau b^{i}-\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right) . \tag{4.5}
\end{equation*}
$$

Note that RHS of above equation is in quadratic form.
Then there must be a one form $\theta=\theta_{i} y^{i}$ on M, such that

$$
P-\left(\frac{\alpha^{3}-3 \alpha \beta^{2}-2 \beta^{3}}{\alpha^{2}+2 \alpha \beta+\beta^{2}}\right) 2 \tau-\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\alpha^{2}}\right)=\theta
$$

Thus (4.5) becomes

$$
\begin{equation*}
G_{\alpha}^{i}+2 \alpha^{2} \tau b^{i}=\bar{G}_{\bar{\alpha}}^{i}+\frac{1}{2 \bar{b}^{2}}\left(\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right)+\theta y^{i} \tag{4.6}
\end{equation*}
$$

This completes the proof of necessity.
Conversely from (4.2),(4.3) and (1.5) we have

$$
\begin{equation*}
G^{i}=\bar{G}^{i}+\left[\theta+\left(\frac{\alpha^{3}-3 \alpha \beta^{2}-2 \beta^{3}}{\alpha^{2}+2 \alpha \beta+\beta^{2}}\right) 2 \tau-\frac{1}{\bar{b}^{2}}\left(\bar{s}_{0}+\frac{\bar{r}_{00} \bar{\beta}}{\alpha^{2}}\right)\right] y^{i} . \tag{4.7}
\end{equation*}
$$

Thus L is projectively equivalent to \bar{L}. From the theorem (1.2), immediately we get the following corollary
Corollary 4.1. : Let $L=\alpha+2 \beta+\frac{\beta^{2}}{\alpha}$ ba special (α, β)-metric and $\bar{L}=\frac{\bar{\alpha}^{2}}{\beta}$ be a Kropina metric be two (α, β)-metrics on a n-dimensional manifold M with dimension $n>2$, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non-zero collinear 1 -forms. Then L is projectively related to \bar{L} if and only if they are Douglas metrics and the spray coefficients of α and $\bar{\alpha}$ have the following relations

$$
\begin{aligned}
& G^{i}+2 \alpha^{2} \tau b^{i}=\bar{G}_{\bar{\alpha}}^{i}+\frac{1}{2 \bar{b}^{2}}\left[\bar{\alpha}^{2} \bar{s}^{i}+\bar{r}_{00} \bar{b}^{i}\right]+\theta y^{i} \\
& s_{i j}=0 \\
& \bar{s}_{i j}=\frac{1}{\bar{b}^{2}}\left(\bar{b}_{i} \bar{s}_{j}-\bar{b}_{j} \bar{s}_{i}\right) \\
& b_{i \mid j}=2 \tau\left\{\left(1+2 b^{2}\right) a_{i j}+3 b_{i} b_{j}\right\} .
\end{aligned}
$$

where $b_{i \mid j}$ denotes the coefficients of the covariant derivative of β with respect to α.

References

1. P. L. Antonelli and M. Matsumto, The Theory of Sprays and Finsler spaces with application in Physics and biology, kluwer acad. publ., Dordrecht, Boston, London, (1993).
2. N. Cui and Yi-Bing, Projective change between two classes of (α, β)-metrics, Diff. Geom. and its Applications 27 (2009), 566-573.
3. Feng Mu and Xinyue Cheng, On the Projective Equivalence between (α, β)-metrics and Kropina metric, Diff. Geom-Dynamical systems 14 (2012), 106-116.
4. R. S. Ingarden, Geometry of thermodynamics, Diff. Geom. Methods in Theor. Phys., XV Intern. Conf.Clausthal 1986, World Scientific, Singapore, 1987.
5. V. K. Kropina, On the Projective Finsler space with certain special form, Naucn. Doklady vyss. Skoly, Fiz-mat. Nauki 1952(2) (1960), 38-42.
6. B. Li, Y. Shen and Z. Shen, On a Class of Douglas metrics, Studia Scientiarum Mathematicarum Hungarica 46(3) (2009), 355-365.
7. M. Matsumto, Finsler Space with (α, β)-metric of douglas type, Tensor N. S. 60 (1998), 123-134.
8. M. Matsumto and S. I. Hojo, A Conclusive theorem on C-reducible Finsler spaces, Tensor N. S. 32 (1978), 225-230.
9. S. K. Narasimhamurthy, Projective change between Matsumoto metric and Randers metric, Proc. Jangjeon Math. Soc. 3 (2014), 393-402.
10. S. K. Narasimhamurthy and D. M. Vasantha, Projective change between two Finsler space with (α, β)-metric, Kungpook Math. J. 52 (2012), 81-89.
11. C. Shibat, On Finsler spaces with Kropina metric, Rep. Math. Phys. 13 (1978), 117-128.
12. P. Stavrinos, F. Diakogiannnis, Finslerian structure of anisotropic gravitational field, Gravit. Cosmol. 10(4) (2004), 1-11.
13. Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canadian Journal of Mathematics 61(6) (2009), 1357-1374.
14. A. Tayebi, E. Peyghan and H. Sadeghi, On two subclasses of (α, β)-metrics being projectively related, Journal of Geometry and Physics 62 (2012), 292-300.
15. M. Zohrehvand and M. M. Rezaii, On Projective related two special classes of (α, β)-metrics, Differential geometry and its applications 29, (2011), 660-669.
${ }^{1}$ Department of Mathematics, Acharya Institute of Technology, Soldevanahalli, Bengaluru - 560107, Karnataka, INDIA.

E-mail address: pradeepget@gmail.com
${ }^{2}$ Department of Mathematics, East point college of Engineering \& Technology, Avalahalli, Bengaluru - 560049 , Karnataka, INDIA.

E-mail address: madhuts2327@gmail.com
${ }^{3}$ Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shivamogga, Karnataka, INDIA.

E-mail address: ramfins@gmail.com

[^0]: Date: Received: Aug 22, 2015; Accepted: Nov 25, 2015.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 53B40; Secondary 53C60.
 Key words and phrases. Finsler space, (α, β)-metric, Kropina metric, Projective change, Douglas metric.

