PROJECTIVE EQUIVALENCE BETWEEN TWO FAMILIES OF FINSLER METRICS

PRADEEP KUMAR^{1*}, MADHU T S² AND M RAMESHA³

ABSTRACT. In this paper, we find the necessary and sufficient condition to characterize the projective relation between two subclasses of (α, β) -metrics $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ and $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ on a manifold M with dimension n > 2, where α and $\bar{\alpha}$ are two Riemannian metrics, β and $\bar{\beta}$ are two non zero 1-forms.

1. INTRODUCTION

In Finsler geometry, two Finsler metrics L and \overline{L} on a manifold M are said to be projectively related if $G^i = \overline{G}^i + Py^i$, where G^i and \overline{G}^i are the geodesic coefficients of F and \overline{F} respectively and P = P(x, y) is a scalar function on the slit tangent bundle TM_0 . In this case, any geodesic of the first is also geodesic for the second and viceversa. The projective changes between two Finsler spaces have been studied by [2], [3], [9], [10], [14], [15].

 (α, β) -metrics form a special and very important classes of Finsler metrics which can be expressed in the form $L = \alpha \phi(s)$: $s = \frac{\beta}{\alpha}$, where α is a Riemannian metric, β is a 1-form and ϕ is a C^{∞} positive function on the definite domain. In particular, when $\phi = 1/s$, the Finsler metric $L = \frac{\alpha^2}{\beta}$ is called Kropina metric. Kropina metric was first introduced by L. Berwald in connection with two dimensional Finsler space with rectilinear extremal and was investigated by V. K. Kropina [5]. They together with Randers metric are C-reducible [8]. However, Randers metric are regular Finsler metric but Kropina metric is non-regular Finsler metric. Kropina metric seem to be among the simplest nontrivial Finsler metric with many interesting applications in physics, electron optics with a magnetic field, dissipative mechanics and irreversible thermodynamics [4], [11]. Also, there are interesting applications in relativistic field theory, evolution and developmental biology.

Based on Stavrino's work on Finslerian structure of anisotropic gravitational field [12], we know that the anisotropy is an issue of the background radiation for all possible (α, β) -metrics. Then the 1-form β represents the same direction of the observed anisotropy of the microwave background radiation. That is, if two

Date: Received: Aug 22, 2015; Accepted: Nov 25, 2015.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 53B40; Secondary 53C60.

Key words and phrases. Finsler space, (α, β) -metric, Kropina metric, Projective change, Douglas metric.

 (α, β) -metrics $L = \alpha \phi(\frac{\beta}{\alpha})$ and $\bar{L} = \bar{\alpha} \phi(\frac{\bar{\beta}}{\bar{\alpha}})$ are the same anisotropy directions (or, they have the same axis rotation to their indicatrices), then their 1-form β and $\bar{\beta}$ are collinear, there is a function $\mu \in C^{\infty}(M)$ such that $\beta(x, y) = \mu \bar{\beta}(x, y)$. By [3], for the projective equivalence between a general (α, β) -metric and a Kropina metric, we have the following lemma

Lemma 1.1. Let $L = \alpha \phi\left(\frac{\beta}{\alpha}\right)$ be an (α, β) -metric on n-dimensional manifold M(n > 2) satisfying that β is not parallel with respect to $\alpha, db \neq 0$ everywhere $(or) \ b = constant$ and L is not of Randers type. Let $\overline{L} = \frac{\overline{\alpha}^2}{\beta}$ be a Kropina metric on the manifold M, where $\overline{\alpha} = \lambda(x)\alpha$ and $\overline{\beta} = \mu(x)\beta$. Then L is Projectively equivalent to \overline{L} if and only if the following equations holds

$$[1 + (k_1 + k_2 s^2)s^2 + k_3 s^2]\phi'' = (k_1 + k_2 s^2)(\phi - s\phi'), \qquad (1.1)$$

$$G^i_{\alpha} = G^i_{\bar{\alpha}} + \theta y^i - \sigma (k_1 \alpha^2 + k_2 \beta^2) b^i, \qquad (1.2)$$

$$b_{i|j} = 2\sigma[(1+k_1b^2)a_{ij} + (k_2b^2 + k_3)b_ib_j], \quad (1.3)$$

$$\bar{s}_{ij} = \frac{1}{\bar{b}^2} (\bar{b}_i \bar{s}_j - \bar{b}_j \bar{s}_i), \qquad (1.4)$$

where $\sigma = \sigma(x)$ is a scalar function and k_1 , k_2 and k_3 are constants. In this case both $L = \alpha \phi(\frac{\beta}{\alpha})$ and $\bar{L} = \frac{\bar{\alpha}^2}{\beta}$ are Douglas metrics.

The purpose of this paper is to study the projective equivalence between two families of Finsler metrics. The main results of the paper are as follows:

Theorem 1.2. Let $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ be a (α, β) -metric and $\overline{L} = \frac{\overline{\alpha}^2}{\beta}$ be a Kropina metric on a n-dimensional manifold M(n > 2) where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two nonzero collinear 1-forms. Then L is projectively equivalent to \overline{L} if and only if they are Douglas metrics and the geodesic co-efficient of α and $\overline{\alpha}$ have the following relation

$$G^{i}_{\alpha} + 2\alpha^{2}\tau b^{i} = \bar{G}^{i}_{\bar{\alpha}} + \frac{1}{2\bar{b}^{2}}(\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}) + \theta y^{i}, \qquad (1.5)$$

where $b^i = a^{ij}b_j$, $\bar{b}^i = \bar{a}^{ij}\bar{b}_j$, $\bar{b}^2 = \|\bar{\beta}^2\|_{\bar{\alpha}}$, $\tau = \tau(x)$ is scaler function and $\theta = \theta_i y^i$ is a 1-form on M.

By [6] and [7], we obtain immediately from theorem (1.2), that

Proposition 1.3. Let $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ be an (α, β) -metric and $\overline{L} = \frac{\overline{\alpha}^2}{\beta}$ be a Kropina metric on a n-dimensional manifold M(n > 2) where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two nonzero collinear 1-forms. Then F is projectively equivalent to \overline{F} if and only if the following holds

$$G^{i}_{\alpha} + 2\alpha^{2}\tau b^{i} = \bar{G}^{i}_{\bar{\alpha}} + \frac{1}{2\bar{b}^{2}}(\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}) + \theta y^{i}, \qquad (1.6)$$

$$b_{i|j} = 2\tau \{ (1+2b^2)a_{ij} - 3b_i b_j \}, \qquad (1.7)$$

$$\bar{s}_{ij} = \frac{1}{\bar{b}^2} (\bar{b}_i \bar{s}_j - \bar{b}_j \bar{s}_i), \qquad (1.8)$$

where $b_{i|j}$ denote the coefficient of the covariant derivative of β with respect to α .

2. Preliminaries

We say that a Finsler metric is projectively related to another Finsler metric if they have the same geodesic as point sets. In Riemannian geometry, two Riemannian metrics α and $\bar{\alpha}$ are projectively related if and only if their spray coefficients have the relation [2]

$$G^i_{\alpha} = G^i_{\bar{\alpha}} + \lambda_{x^k} y^k y^i, \qquad (2.1)$$

where $\lambda = \lambda(x)$ is a scalar function on the based manifold and (x^i, y^i) denotes the local coordinates in the tangent bundle TM.

Two Finsler metrics F and \overline{F} on a manifold M are said to be projectively related if and only if their spray coefficients have the relation [2]

$$G^i = \bar{G}^i + P(y)y^i, \tag{2.2}$$

where P(y) is a scalar function on $TM \setminus \{0\}$ and homogeneous of degree one in y.

For a given Finsler metric L = L(x, y), the geodesics of L satisfy the following ODE:

$$\frac{d^2x^i}{dt^2} + 2G^i\left(x,\frac{dx}{dt}\right) = 0,$$

where $G^{i} = G^{i}(x, y)$ is called the geodesic coefficient, which is given by

$$G^{i} = \frac{1}{4}g^{il}\{[F^{2}]_{x^{m}y^{l}}y^{m} - [F^{2}]_{x^{l}}\}$$

Let $\phi = \phi(s)$, $|s| < b_0$, be a positive C^{∞} function satisfying the following

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \qquad (|s| \le b < b_0).$$
(2.3)

If $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta = b_iy^i$ is 1-form satisfying $||\beta_x||_{\alpha} < b_0, \forall x \in M$, then $F = \alpha \phi(s), s = \beta/\alpha$, is called an (regular) (α, β) -metric. In this case, the fundamental form of the metric tensor induced by L is positive definite.

Let $\nabla \beta = b_{i|j} dx^i \otimes dx^j$ be covariant derivative of β with respect to α . Denote $r_{ij} = \frac{1}{2}(b_{i|j} + b_{j|i})$ and $s_{ij} = \frac{1}{2}(b_{i|j} - b_{j|i})$. Note that β is closed if and only if $s_{ij} = 0$ [13]. Let $s_j = b^i s_{ij}$, $s_j^i = a^{il} s_{lj}$, $s_0 = s_i y^i$, $s_0^i = s_j^i y^j$ and $r_{00} = r_{ij} y^i y^j$.

The relation between the geodesic coefficients G^i of L and geodesic coefficient G^i_{α} of α is given by

$$G^{i} = G^{i}_{\alpha} + \alpha Q s^{i}_{0} + \{-2Q\alpha s_{0} + r_{00}\}\{\Psi b^{i} + \Theta \alpha^{-1} y^{i}\},$$
(2.4)

where

$$\begin{split} \Theta &= \frac{\phi \phi' - s(\phi \phi'' + \phi' \phi')}{2\phi \{(\phi - s\phi') + (b^2 - s^2)\phi''\}}, \\ Q &= \frac{\phi'}{\phi - s\phi'}, \\ \Psi &= \frac{\phi''}{2\{(\phi - s\phi') + (b^2 - s^2)\phi''\}}. \end{split}$$

For a Kropina metric $F = \frac{\alpha^2}{\beta}$, it is very easy to see that it is not a regular (α, β) -metric but the relation $\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0$ is still true for |s| > 0.

In [6], the authors characterized the (α, β) -metrics of Douglas type.

Lemma 2.1. [6]: Let $F = \alpha \phi(\frac{\beta}{\alpha})$ be a regular (α, β) -metric on an n-dimensional manifold M(n > 2). Assume that β is not parallel with respect to α and $db \neq 0$ every where or b = constant, and F is not of Randers type. Then F is a Douglas metric if and only if the function $\phi = \phi(s)$ with $\phi(0) = 1$ satisfies following

$$[1 + (k_1 + k_2 s^2)s^2 + k_3 s^2]\phi'' = (k_1 + k_2 s^2)(\phi - s\phi'), \qquad (2.5)$$

and β satisfies

$$b_{i|j} = 2\sigma[(1+k_1b^2)a_{ij} + (k_2b^2 + k_3)b_ib_j], \qquad (2.6)$$

where $b^2 = \|\beta\|_{\alpha}^2$ and $\sigma = \sigma(x)$ is a scalar function and k_1 , k_2 and k_3 are constants with $(k_2, k_3) \neq (0, 0)$.

For a Kropina metric, we have the following

Lemma 2.2. [7]: let $L = \frac{\alpha^2}{\beta}$ be Kropina metric on an n-dimensional manifold M. Then

(i) $(n \ge 3)$ Kropina metric L with $b^2 \ne 0$ is Douglas metric if and only if

$$s_{ik} = \frac{1}{b^2} (b_i s_k - b_j s_i).$$
(2.7)

(ii) (n = 2) Kropina metric L is a Douglas metric.

Definition 2.3. [2]: Let

$$D^{i}_{jkl} = \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(G^{i} - \frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i} \right), \qquad (2.8)$$

where G^i are the spray coefficients of L. The tensor $D = D^i_{jkl}\partial_i \otimes dx^j \otimes dx^k \otimes dx^l$ is called the Douglas tensor. A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

We know that the Douglas tensor is a projective invariant. Note that the spray coefficients of a Riemannian metric are quadratic forms and one can see that the Douglas tensor vanishes from (2.8). This shows that Douglas tensor is a non-Riemannian quantity.

In the following, we use quantities with a bar to denote the corresponding quantities of the metric \bar{L} .

Now, first we compute the Douglas tensor of a general (α, β) -metric. Let

$$\bar{G}^{i} = G^{i}_{\alpha} + \alpha Q s^{i}_{0} + \Psi \{-2Q\alpha s_{0} + r_{00}\} b^{i}.$$
(2.9)

Then (2.4) becomes

Clearly, G^i and \overline{G}^i are projective equivalent according to (2.2), they have the same Douglas tensor. Let

$$T^{i} = \alpha Q s_{0}^{i} + \Psi \{-2Q\alpha s_{0} + r_{00}\} b^{i}.$$
(2.10)

Then $\bar{G}^i = G^i_{\alpha} + T^i$. Thus

$$D^{i}_{jkl} = \bar{D}^{i}_{jkl}$$

$$= \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(G^{i}_{\alpha} - \frac{1}{n+1} \frac{\partial G^{m}_{\alpha}}{\partial y^{m}} y^{i} + T^{i} - \frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i} \right),$$

$$= \frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}} \left(T^{i} - \frac{1}{n+1} \frac{\partial T^{m}}{\partial y^{m}} y^{i} \right).$$
(2.11)

To compute (2.11) explicitly, we use the following identities

$$\alpha_{y^k} = \alpha^{-1} y_k, \, s_{y^k} = \alpha^{-2} (b_k \alpha - s y_k),$$

where $y_i = a_{il} y^l$. Hereafter, α_{y^k} means $\frac{\partial \alpha}{\partial y^k}$. Then

$$[\alpha Q s_0^m]_{y^m} = \alpha^{-1} y_m Q s_0^m + \alpha^{-2} Q' [b_m \alpha^2 - \beta y_m] s_0^m = Q' s_0$$

and

$$[\Psi(-2Q\alpha s_0+r_{00})b^m]_{y^m} = \Psi'\alpha^{-1}(b^2-s^2)[r_{00}-2Q\alpha s_0]+2\Psi[r_0-Q'(b^2-s^2)s_0-Qss_0]$$
, where $r_j = b^i r_{ij}$ and $r_0 = r_i y^i$. Thus from (2.10), we have

$$T_{y^m}^m = Q's_0 + \Psi'\alpha^{-1}(b^2 - s^2)[r_{00} - 2Q\alpha s_0] + 2\Psi[r_0 - Q'(b^2 - s^2)s_0 - Qss_0].$$
(2.12)

Let L and \overline{L} be two (α, β) -metrics, we assume that they have the same Douglas tensor, i.e. $D^i_{jkl} = \overline{D}^i_{jkl}$. From (2.8) and (2.11), we have

$$\frac{\partial^3}{\partial y^j \partial y^k \partial y^l} \left(T^i - \bar{T}^i - \frac{1}{n+1} \left(T^m_{y^m} - \bar{T}^m_{y^m} \right) y^i \right) = 0.$$

Then there exists a class of scalar function $H_{jk}^i = H_{jk}^i(x)$, such that

$$H_{00}^{i} = T^{i} - \bar{T}^{i} - \frac{1}{n+1} \left(T_{y^{m}}^{m} - \bar{T}_{y^{m}}^{m} \right) y^{i}, \qquad (2.13)$$

where $H_{00}^i = H_{jk}^i(x)y^jy^k$, T^i and $T_{y^m}^m$ are given by (2.10) and (2.12) respectively.

3. Projective equivalence between Special (α, β) -metric and KROPINA METRIC

In this section, we find the projective relation between special (α, β) -metric $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ and Kropina metric $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ on a same underlying manifold M of dimension n > 2. For (α, β) -metric $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$, one can prove by (2.3) that L is a regular Finsler metric if and only if 1-form β satisfies the condition $\|\beta_x\|_{\alpha} < 1$ for any $x \in M$. The geodesic coefficients are given by (2.4) with

$$\theta = \frac{1 - 3s^2 - 2s^3}{(1 + 2s + s^2)(1 + 2b^2 - 3s^2)},$$

$$Q = \frac{2 + 2s}{1 - s^2},$$

$$\Psi = \frac{1}{1 + 2b^2 - 3s^2}.$$
(3.1)

For Kropina metric $\overline{L} = \frac{\overline{\alpha}^2}{\overline{\beta}}$, the geodesic coefficients are given by (2.4) with

$$\bar{Q} = -\frac{1}{2s}, \quad \bar{\theta} = -\frac{s}{\bar{b}^2}, \quad \bar{\Psi} = \frac{1}{2\bar{b}^2}.$$
 (3.2)

In this paper, we assume that $\lambda = \frac{1}{n+1}$. Since the Douglas tensor is projective invariant, we have

Theorem 3.1. Let $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ be an (α, β) -metric and $\overline{L} = \frac{\overline{\alpha}^2}{\beta}$ be an Kropina metric on an n-dimensional manifold M(n > 2) where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two non-zero 1-forms. Then L and \overline{L} have the same Douglas tensors if and only if they are all Douglas metrics.

Proof: First we prove the sufficient condition.

Let L and \bar{L} be Douglas metrics and corresponding Douglas tensors be D^i_{jkl} and \bar{D}^i_{jkl} . Then by the definition of Douglas metric, we have $D^i_{jkl} = 0$ and $\bar{D}^i_{jkl} = 0$, that is both F and \bar{F} have same Douglas tensor, then (2.7) holds. Plugging (3.1) and (3.2) into (2.13), we have

$$H_{00}^{i} = \frac{A^{i}\alpha^{9} + B^{i}\alpha^{8} + C^{i}\alpha^{7} + D^{i}\alpha^{6} + E^{i}\alpha^{5} + F^{i}\alpha^{4} + G^{i}\alpha^{3} + H^{i}\alpha^{2} + I^{i}}{J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N} + \frac{\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}}{2\bar{b}^{2}\bar{\beta}}, \qquad (3.3)$$

where

$$\begin{array}{rcl} A^{i} &=& 2(1+2b^{2})\{(1+2b^{2})s_{0}^{i}-2b^{i}s_{0}\},\\ B^{i} &=& (1+2b^{2})\{2(1+2b^{2})\beta s_{0}^{i}-4\beta s_{0}b^{i}+r_{00}b^{i}-2\lambda y^{i}(r_{0}+s_{0})\},\\ C^{i} &=& -2\beta[\beta(1+2b^{2})\{6+(1+2b^{2})s_{0}^{i}-2\beta(4+2b^{2})s_{0}b^{i}-12b^{2}\lambda s_{0}y^{i}\}],\\ D^{i} &=& \beta[-\beta^{2}\{(2+4b^{2})(7+2b^{2})s_{0}^{i}-8(2+b^{2})s_{0}b^{i}\}+\beta\{(5+4b^{2})r_{00}b^{i}\\ &-& 2\lambda y^{i}((5+4b^{2})r_{0}+(5+16b^{2})s_{0})\}-6b^{2}r_{00}\lambda y^{i}],\\ E^{i} &=& 6\beta^{3}[\beta\{(1+4b^{2})s_{0}^{i}+2s_{0}b^{i}\}-4\lambda s_{0}y^{i}(1+b^{2})],\\ F^{i} &=& \beta^{3}[6\beta^{2}\{(5+4b^{2})s_{0}^{i}+2s_{0}b^{i}\}+12b^{2}r_{00}\lambda y^{i}+\beta\{(7+2b^{2})r_{00}b^{i}\\ &-& 2\lambda y^{i}((7+2b^{2})r_{0}+(19+20b^{2})s_{0})\}],\\ G^{i} &=& -6\beta^{5}[3\{\beta s_{0}^{i}+2s_{0}\lambda y^{i}\}-10\lambda s_{0}y^{i}],\\ H^{i} &=& -3\beta^{5}[6\beta^{2}s_{0}^{i}+(4+2b^{2})r_{00}\lambda y^{i}+\beta\{r_{00}b^{i}-2\lambda y^{i}(r_{0}+5s_{0})\}],\\ I^{i} &=& 6\beta^{7}r_{00}\lambda y^{i},\\ J &=& (1+2b^{2})^{2},\\ K &=& -4\beta^{2}(1+2b^{2})(2+b^{2}),\\ L &=& \beta^{4}[(1+2b^{2})(13+2b^{2})+9],\\ M &=& -12\beta^{6}(b^{2}+2),\\ N &=& 9\beta^{8},\\ \bar{A}^{i} &=& \bar{b}^{2}\bar{s}_{0}^{i}-\bar{b}^{i}\bar{s}_{0},\\ \bar{B}^{i} &=& \bar{\beta}[2\lambda y^{i}(\bar{r}_{0}+\bar{s}_{0})-\bar{b}^{i}\bar{r}_{00}]. \end{array}$$

Further (3.3) is equivalent to

$$(A^{i}\alpha^{9} + B^{i}\alpha^{8} + C^{i}\alpha^{7} + D^{i}\alpha^{6} + E^{i}\alpha^{5} + F^{i}\alpha^{4} + G^{i}\alpha^{3} + H^{i}\alpha^{2} + I^{i})(2\bar{b}^{2}\bar{\beta}) + (\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}) \times (J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N) = H^{i}_{00}(2\bar{b}^{2}\bar{\beta})(J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N).$$
(3.4)

Replacing (y^i) by $(-y^i)$ in (3.4), we get

$$(-A^{i}\alpha^{9} + B^{i}\alpha^{8} - C^{i}\alpha^{7} + D^{i}\alpha^{6} - E^{i}\alpha^{5} + F^{i}\alpha^{4} - G^{i}\alpha^{3} + H^{i}\alpha^{2} + I^{i})(-2\bar{b}^{2}\bar{\beta}) - (\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}) \times (J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N) = -H^{i}_{00}(2\bar{b}^{2}\bar{\beta})(J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N).$$
(3.5)

Adding (3.4) and (3.5) we obtain

$$(A^{i}\alpha^{9} + C^{i}\alpha^{7} + E^{i}\alpha^{5} + G^{i}\alpha^{3})(\bar{b}^{2}\bar{\beta}) = 0$$
$$A^{i}\alpha^{9} + C^{i}\alpha^{7} + E^{i}\alpha^{5} + G^{i}\alpha^{3} = 0.$$

Therefore we conclude that (3.3) is equivalent to

$$H_{00}^{i} = \frac{B^{i}\alpha^{8} + D^{i}\alpha^{6} + F^{i}\alpha^{4} + H^{i}\alpha^{2} + I^{i}}{J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N} + \frac{\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i}}{2\bar{b}^{2}\bar{\beta}}$$
(3.6)

and (3.6) is equivalent to

$$(B^{i}\alpha^{8} + D^{i}\alpha^{6} + F^{i}\alpha^{4} + H^{i}\alpha^{2} + I^{i})(2\bar{b}^{2}\bar{\beta}) + (\bar{A}^{i}\bar{\alpha}^{2} + \bar{B}^{i})(J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N)$$

= $H^{i}_{00}(2\bar{b}^{2}\bar{\beta})(J\alpha^{8} + k\alpha^{6} + L\alpha^{4} + M\alpha^{2} + N).$ (3.7)

In the above equation (3.7), we can see that $\bar{A}^i\bar{\alpha}^2(J\alpha^8 + k\alpha^6 + L\alpha^4 + M\alpha^2 + N)$ can be divided by $\bar{\beta}$. Since $\beta = \mu\bar{\beta}$, then $\bar{A}^i\bar{\alpha}^2J\alpha^8$ can be divided by $\bar{\beta}$. Because $\bar{\beta}$ is prime with respect to α and $\bar{\alpha}$. Therefore $\bar{A}^i = \bar{b}^2\bar{s}_0^i - \bar{b}^i\bar{s}_0$ can be divided by $\bar{\beta}$. Hence there is a scalar function $\psi^i(x)$ such that

$$\bar{b}^2 \bar{s}_0^i - \bar{b}^i \bar{s}_0 = \bar{\beta} \psi^i.$$
(3.8)

Transvecting (3.8) by $\bar{y}_i = \bar{a}_{ij}y^j$, we get $\psi^i(x) = -\bar{s}^i$. Thus we have

$$\bar{s}_{ij} = \frac{1}{\bar{b}^2} (\bar{b}_i \bar{s}_j - \bar{b}_j \bar{s}_i). \tag{3.9}$$

Thus by lemma (2.2), $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ is a Douglas metrics. i.e., Both $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ and $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ are Douglas metrics.

If n = 2, $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ is a Douglas metric by lemma (2.2). Thus L and \bar{L} have the same Douglas tensors means that they are Douglas metrics. Thus $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ be an special (α, β) -metric and $\bar{L} = \frac{\bar{\alpha}^2}{\bar{\beta}}$ be a Kropina metric on an n-dimensional manifold $M(n \ge 2)$, where α and $\bar{\alpha}$ are Riemannian metric, β and $\bar{\beta}$ are two non zero collinear 1-forms. Then L and \bar{L} have same Douglas tensors if and only if they are Douglas metrics. This completes the proof of theorem (3.1).

4. Proof. of Theorem (1.2)

First we prove the necessary condition:

Since Douglas tensor is an invariant under projective changes between two Finsler metrics, If L is projectively related to \overline{L} , then they have the same Douglas tensor. According to theorem (3.1), we obtain that both L and \overline{L} are Douglas metrics. By [3], It is well know that Kropina metric $\overline{L} = \frac{\overline{\alpha}^2}{\beta}$ with $b^2 \neq 0$ is a Douglas metric if and only if $s_{ik} = \frac{1}{b^2}(b_i s_k - b_k s_i)$ and also it has it has been proved that by [5], we know that (α, β) -metric, $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ is a Douglas metric if and only if

$$b_{i|j} = 2\tau [(1+2b^2)a_{ij} - 3b_i b_j], \qquad (4.1)$$

where $\tau = \tau(x)$ is a scalar function on M. In this case, β is closed. Plugging (4.1) and (3.1) into (2.4), we have

$$G^{i} = G^{i}_{\alpha} + \left(\frac{\alpha^{3} - 3\alpha\beta^{2} - 2\beta^{3}}{\alpha^{2} + \alpha\beta + \beta^{2}}\right) 2\tau y^{i} + 2\tau\alpha^{2}b^{i}.$$
(4.2)

Again plugging (4.2) and (3.2) into (2.4), we have

$$\bar{G}^{i} = \bar{G}^{i}_{\bar{\alpha}} - \frac{1}{2\bar{b}^{2}} \left[-\bar{\alpha}^{2}\bar{s}^{i} + (2\bar{s}_{0}y^{i} - \bar{r}_{00}\bar{b}^{i}) + 2\left(\frac{\bar{r}_{00}\bar{\beta}y^{i}}{\bar{\alpha}^{2}}\right) \right].$$
(4.3)

Since L is Projectively equivalent to \overline{L} , then there exist a scalar function P = P(x, y) on $TM \setminus \{0\}$ such that

$$G^i = \bar{G}^i + Py^i. \tag{4.4}$$

By (4.2), (4.3) and (4.4), we have

$$\left[P - \left(\frac{\alpha^3 - 3\alpha\beta^2 - 2\beta^3}{\alpha^2 + 2\alpha\beta + \beta^2} \right) 2\tau - \frac{1}{\bar{b}^2} \left(\bar{s}_0 + \frac{\bar{r}_{00}\bar{\beta}}{\alpha^2} \right) \right] y^i = G^i_{\alpha} - \bar{G}^i_{\bar{\alpha}} + 2\alpha^2\tau b^i - \frac{1}{2\bar{b}^2} (\bar{\alpha}^2\bar{s}^i + \bar{r}_{00}\bar{b}^i)$$

$$(4.5)$$

Note that RHS of above equation is in quadratic form. Then there must be a one form $\theta = \theta_i y^i$ on M, such that

$$P - \left(\frac{\alpha^3 - 3\alpha\beta^2 - 2\beta^3}{\alpha^2 + 2\alpha\beta + \beta^2}\right)2\tau - \frac{1}{\overline{b}^2}\left(\overline{s}_0 + \frac{\overline{r}_{00}\overline{\beta}}{\alpha^2}\right) = \theta.$$

Thus (4.5) becomes

$$G^{i}_{\alpha} + 2\alpha^{2}\tau b^{i} = \bar{G}^{i}_{\bar{\alpha}} + \frac{1}{2\bar{b}^{2}}(\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}) + \theta y^{i}.$$
(4.6)

This completes the proof of necessity.

Conversely from (4.2), (4.3) and (1.5) we have

$$G^{i} = \bar{G}^{i} + \left[\theta + \left(\frac{\alpha^{3} - 3\alpha\beta^{2} - 2\beta^{3}}{\alpha^{2} + 2\alpha\beta + \beta^{2}}\right)2\tau - \frac{1}{\bar{b}^{2}}\left(\bar{s}_{0} + \frac{\bar{r}_{00}\bar{\beta}}{\alpha^{2}}\right)\right]y^{i}.$$
(4.7)

Thus L is projectively equivalent to L. From the theorem (1.2), immediately we get the following corollary

Corollary 4.1. : Let $L = \alpha + 2\beta + \frac{\beta^2}{\alpha}$ be special (α, β) -metric and $\overline{L} = \frac{\overline{\alpha}^2}{\beta}$ be a Kropina metric be two (α, β) -metrics on a n-dimensional manifold M with dimension n > 2, where α and $\overline{\alpha}$ are two Riemannian metrics, β and $\overline{\beta}$ are two non-zero collinear 1-forms. Then L is projectively related to \overline{L} if and only if they are Douglas metrics and the spray coefficients of α and $\overline{\alpha}$ have the following relations

$$G^{i} + 2\alpha^{2}\tau b^{i} = \bar{G}^{i}_{\bar{\alpha}} + \frac{1}{2\bar{b}^{2}}[\bar{\alpha}^{2}\bar{s}^{i} + \bar{r}_{00}\bar{b}^{i}] + \theta y^{i}$$

$$s_{ij} = 0,$$

$$\bar{s}_{ij} = \frac{1}{\bar{b}^{2}}(\bar{b}_{i}\bar{s}_{j} - \bar{b}_{j}\bar{s}_{i}),$$

$$b_{i|j} = 2\tau\{(1+2b^{2})a_{ij} + 3b_{i}b_{j}\}.$$

where $b_{i|j}$ denotes the coefficients of the covariant derivative of β with respect to α .

References

- 1. P. L. Antonelli and M. Matsumto, *The Theory of Sprays and Finsler spaces with application in Physics and biology*, kluwer acad. publ., Dordrecht, Boston, London, (1993).
- N. Cui and Yi-Bing, Projective change between two classes of (α, β)-metrics, Diff. Geom. and its Applications 27 (2009), 566-573.
- Feng Mu and Xinyue Cheng, On the Projective Equivalence between (α, β)-metrics and Kropina metric, Diff. Geom-Dynamical systems 14 (2012), 106-116.
- R. S. Ingarden, *Geometry of thermodynamics*, Diff. Geom. Methods in Theor. Phys., XV Intern. Conf.Clausthal 1986, World Scientific, Singapore, 1987.

- V. K. Kropina, On the Projective Finsler space with certain special form, Naucn. Doklady vyss. Skoly, Fiz-mat. Nauki 1952(2) (1960), 38-42.
- B. Li, Y. Shen and Z. Shen, On a Class of Douglas metrics, Studia Scientiarum Mathematicarum Hungarica 46(3) (2009), 355-365.
- 7. M. Matsumto, Finsler Space with (α, β) -metric of douglas type, Tensor N. S. **60** (1998), 123-134.
- M. Matsumto and S. I. Hojo, A Conclusive theorem on C-reducible Finsler spaces, Tensor N. S. 32 (1978), 225-230.
- S. K. Narasimhamurthy, Projective change between Matsumoto metric and Randers metric, Proc. Jangjeon Math. Soc. 3 (2014), 393-402.
- 10. S. K. Narasimhamurthy and D. M. Vasantha, *Projective change between two Finsler space* with (α, β) -metric, Kungpook Math. J. **52** (2012), 81-89.
- 11. C. Shibat, On Finsler spaces with Kropina metric, Rep. Math. Phys. 13 (1978), 117-128.
- P. Stavrinos, F. Diakogiannnis, Finslerian structure of anisotropic gravitational field, Gravit. Cosmol. 10(4) (2004), 1-11.
- 13. Z. Shen, On a class of Landsberg metrics in Finsler geometry, Canadian Journal of Mathematics **61(6)** (2009), 1357-1374.
- 14. A. Tayebi, E. Peyghan and H. Sadeghi, On two subclasses of (α, β) -metrics being projectively related, Journal of Geometry and Physics **62** (2012), 292-300.
- 15. M. Zohrehvand and M. M. Rezaii, On Projective related two special classes of (α, β) -metrics, Differential geometry and its applications **29**, (2011), 660-669.

 1 Department of Mathematics, Acharya Institute of Technology, Soldevanahalli, Bengaluru - 560107, Karnataka, INDIA.

E-mail address: pradeepget@gmail.com

² DEPARTMENT OF MATHEMATICS, EAST POINT COLLEGE OF ENGINEERING & TECHNOL-OGY, AVALAHALLI, BENGALURU - 560049, KARNATAKA, INDIA. *E-mail address:* madhuts2327@gmail.com

³ DEPARTMENT OF P.G. STUDIES AND RESEARCH IN MATHEMATICS, KUVEMPU UNIVER-SITY, SHANKARAGHATTA - 577 451, SHIVAMOGGA, KARNATAKA, INDIA. *E-mail address*: ramfins@gmail.com