See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/287039600

ON ($\mathrm{N}(\mathrm{k}), \xi)$-semi-Riemannian 3-manifolds

Article in Italian Journal of Pure and Applied Mathematics • January 2014
citations
0

3 authors:
D.G. Prakasha

Karnatak University, Dharwad
54 PUBLICATIONS 119 CITATIONS
SEE PROFILE

Somashekhara Ganganna
M S Ramaiah School of Advanced Studies
11 PUBLICATIONS 27 CITATIONS
SEE PROFILE

Bangalore University
40 publications 64 Citations

SEE PROFILE

ON $(N(k), \xi)$-SEMI-RIEMANNIAN 3 -MANIFOLDS

D.G. Prakasha
Department of Mathematics
Karnatak University
Dharwad - 580003
India
e-mail: prakashadg@gmail.com
H.G. Nagaraja
Department of Mathematics
Central College Campus
Bangalore University
Bangalore
India
e-mail: hgnraj@yahoo.com
\section*{G. Somashekhara}
Department of Mathematics
Acharya Institute of Technology
Soldevanahalli
Bangalore - 560107
India

Abstract. The object of the present paper is to study 3-dimensional $(N(k), \xi)$-semiRiemannian manifolds. We study $(N(k), \xi)$-semi-Riemannian 3 -manifolds which are Ricci-semi-symmetric, locally ϕ-symmetric and have η-parallel Ricci tensor.
Key words and phrases: $(N(k), \xi)$-semi-Riemannian 3-manifold, Ricci-semi-symmetric, locally ϕ-symmetric, η-parallel Ricci tensor, η-Einstein manifold.
MSC(2000): 53C25, 53C50.

1. Introduction

Let (M, g) be an n-dimensional semi-Riemannian manifold [12] equipped with a semi-Riemannian metric g. If index $(\mathrm{g})=1$ then g is a Lorentzian metric and (M, g) a Lorentzian manifold [4]. If g is positive definite then g is an usual Riemannian metric and (M, g) a Riemannian manifold. The notion of $(N(k), \xi)$ -semi-Riemannian structure was introduced and studied by Tripathi and Gupta [21] to unify $N(k)$-contact metric [3], Sasakian [5], [14], (ϵ)-Sasakian [17], [22], Kenmotsu [10], para-Sasakian [15], (ϵ)-para-Sasakian structures [20].

In this paper we study 3 -dimensional $(N(k), \xi)$-semi-Riemannian manifolds. The paper is organized as follows. Section 2 is devoted to some basic definitions and properties of almost contact metric, almost para contact metric and $(N(k), \xi)$-semi-Riemannian manifolds. Further, we prove that an $(N(k), \xi)$-semiRiemannian 3-manifold is a space form if and only if the scalar curvature r of the manifold is equal to $6 k$. In Section 3, we show that a Ricci-semi-symmetric $(N(k), \xi)$-semi-Riemannian 3-manifold is a space-form. In Section 4, a necessary and sufficient condition for an $(N(k), \xi)$-semi-Riemannian 3-manifold to be locally ϕ-symmetric is obtained. Section 5 contains some results on $(N(k), \xi)$ -semi-Riemannian 3 -manifold with η-parallel Ricci tensor.

2. Preliminaries

Let M be an n-dimensional differentiable manifold endowed with an almost contact structure (ϕ, ξ, η), where ϕ is a $(1,1)$-tensor field, ξ is a vector field and η is a 1 -form on M satisfying

$$
\begin{equation*}
\eta(\xi)=1, \quad \phi^{2}=-I+\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

where I denotes the identity transformation. It follows from (2.1) that

$$
\begin{equation*}
\eta \cdot \phi=0, \quad \phi(\xi)=0 \tag{2.2}
\end{equation*}
$$

If there exists a semi-Riemannian metric g satisfying

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\epsilon \eta(X) \eta(Y), \quad \forall X, Y \in \chi(M) \tag{2.3}
\end{equation*}
$$

where $\epsilon= \pm 1$, then the structure (ϕ, ξ, η, g) is called an (ϵ)-almost contact metric structure and M is called an (ϵ)-almost contact metric manifold. For an (ϵ)-almost contact metric manifold, we have

$$
\begin{equation*}
\eta(X)=\epsilon g(X, \xi) \text { and } \epsilon=g(\xi, \xi) \forall X \in \chi(M) \tag{2.4}
\end{equation*}
$$

When $\epsilon=1$ and index of g is 0 then M is the usual Sasakian manifold and M is a Lorentz-Sasakian manifold for $\epsilon=-1$ and index of g is 1 .

If $d \eta(X, Y)=g(\phi X, Y)$, then M is said to have (ϵ)-contact metric structure (ϕ, ξ, η, g). For $\epsilon=1$ and g Riemannian, M is the usual contact metric manifold [5]. A contact metric manifold with $\xi \in N(k)$, is called a $N(k)$-contact metric manifold $[1,6]$. If moreover, this structure is normal, that is, if

$$
\begin{equation*}
[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[X, \phi Y]-\phi[\phi X, Y]=-2 d \eta(X, Y) \xi \tag{2.5}
\end{equation*}
$$

then the (ϵ)-contact metric structure is called an (ϵ)-Sasakian structure and the manifold endowed with this structure is called (ϵ)-Sasakian manifold. The physical importance of indefinite Sasakian manifolds have been pointed out by Duggal in [9].

An (ϵ)-almost contact metric structure (ϕ, ξ, η, g) is (ϵ)-Sasakian if and only if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\epsilon \eta(Y) X, \quad \forall X, Y \in \chi(M) \tag{2.6}
\end{equation*}
$$

where ∇ is the Levi-Civita connection with respect to g. Also we have

$$
\begin{equation*}
\nabla_{X} \xi=-\epsilon \phi X \quad \forall X \in \chi(M) \tag{2.7}
\end{equation*}
$$

An almost contact metric manifold is a Kenmotsu manifold [10] if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X \tag{2.8}
\end{equation*}
$$

By (2.8), we have

$$
\nabla_{X} \xi=X-\eta(X) \xi
$$

If in (2.1), the condition $\phi^{2}=-I+\eta \otimes \xi$ is replaced by

$$
\begin{equation*}
\phi^{2}=I-\eta \otimes \xi \tag{2.9}
\end{equation*}
$$

then (M, g) is called an (ϵ)-almost paracontact metric manifold equipped with an (ϵ)-almost paracontact metric structure (ϕ, ξ, η, g).

An (ϵ)-almost paracontact metric structure is called (ϵ)-para-Sasakian structure [20] if

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-g(\phi X, \phi Y) \xi-\epsilon \eta(Y) \phi^{2} X \tag{2.10}
\end{equation*}
$$

where ∇ is Levi-Civita connection with respect to the metric g. A manifold endowed with an (ϵ)-para-sasakian structure is called (ϵ)-para-Sasakian manifold [20]. For $\epsilon=1$ and g Riemannian, M is the usual para-Sasakian manifold [15].

$(N(k), \xi)$-semi-Riemannian manifold

The k-nullity distribution [18] of (M, g) is the distribution

$$
\begin{equation*}
N(k): p \rightarrow N_{p}(k)=\left\{Z \in T_{p} M: R(X, Y) Z=k(g(Y, Z) X-g(X, Z) Y)\right\} \tag{2.11}
\end{equation*}
$$

where k is a real number.
An $(N(k), \xi)$-semi-Riemannian manifold consists of a semi-Riemannian manifold (M, g), a k-nullity distribution $N(k)$ on (M, g) and a non-null unit vector field ξ in (M, g) belonging to $N(k)$. Throught the paper we assume that $X, Y, Z, U, V, W \in \chi(M)$, where $\chi(M)$ is the Lie algebra of vector fields in M, unless specifically stated otherwise. Let ξ be a non null unit vector field in (M, g) and η its associated 1-form. Thus

$$
g(\xi, \xi)=\epsilon
$$

where $\epsilon=1$ or -1 according as ξ is spacelike or timelike, and

$$
\begin{equation*}
\text { a) } g(X, \xi)=\epsilon \eta(X), \quad b) \eta(\xi)=1 \tag{2.12}
\end{equation*}
$$

In an n-dimensional $(N(k), \xi)$-semi-Riemannian manifold (M, g), the following relations hold [21]:

$$
\begin{align*}
R(X, Y) \xi & =\epsilon k\{\eta(Y) X-\eta(X) Y\} \tag{2.13}\\
R(\xi, X) Y & =\epsilon k\{\epsilon g(X, Y) \xi-\eta(Y) X\} \tag{2.14}\\
\eta(R(X, Y) Z) & =k\{\eta(X) g(Y, Z)-\eta(Y) g(X, Z)\} \tag{2.15}\\
S(X, \xi) & =\epsilon k(n-1) \eta(X) \tag{2.16}
\end{align*}
$$

In a 3 -dimensional Riemannian manifold we have

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \tag{2.17}\\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where Q is the Ricci operator, i.e., $g(Q X, Y)=S(X, Y)$ and r is the scalar curvature of the manifold. Putting $Z=\xi$ in (2.17) and using (2.13) and (2.16), we have

$$
\begin{equation*}
\epsilon(\eta(Y) Q X-\eta(X) Q Y)=\left(-\epsilon k+\frac{r}{2} \epsilon\right)(\eta(Y) X-\eta(X) Y) \tag{2.18}
\end{equation*}
$$

Putting $Y=\xi$ in (2.18) and then using (2.12(b)) and (2.16) (for $\mathrm{n}=3$), we get

$$
\begin{equation*}
Q X=\frac{1}{2}\{(r-2 k) X-(r-6 k) \eta(X) \xi\}, \tag{2.19}
\end{equation*}
$$

that is,

$$
\begin{equation*}
S(X, Y)=\frac{1}{2}\{(r-2 k) g(X, Y)-\epsilon(r-6 k) \eta(X) \eta(Y)\} . \tag{2.20}
\end{equation*}
$$

An $(N(k), \xi)$-semi-Riemannian manifold M is said to be η-Einstein if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.21}
\end{equation*}
$$

for any vector fields X, Y where a, b are functions on M. Hence from (2.20) we can state the following:

Lemma 1 A 3-dimensional $(N(k), \xi)$-semi-Riemannian manifold is an η-Einstein manifold.

By using (2.19) and (2.20) in (2.17), we obtain

$$
\begin{align*}
R(X, Y) Z= & \left(\frac{r}{2}-2 k\right)\{g(Y, Z) X-g(X, Z) Y\} \tag{2.22}\\
& -\left(\frac{r}{2}-3 k\right)\{g(Y, Z) \eta(X) \xi-g(X, Z) \eta(Y) \xi \\
& +\epsilon \eta(Y) \eta(Z) X-\epsilon \eta(X) \eta(Z) Y\}
\end{align*}
$$

An $(N(k), \xi)$-semi-Riemannian 3-manifold is a space of constant curvature then it is an indefinite space form.

Remark. Relations (2.19), (2.20) and (2.22) are true for

1. An $N(k)$-contact metric 3-manifold [8] if $\epsilon=1$,
2. A Sasakian 3-manifold if $k=1$ and $\epsilon=1$,
3. A Kenmotsu 3-manifold [7] if $k=-1$ and $\epsilon=1$,
4. An (ϵ)-Sasakian 3-manifold if $k=1$ and $\epsilon k=1$,
5. A para-Sasakian 3-manifold [2] if $k=-1$ and $\epsilon=1$,
6. An (ϵ)-para-Sasakian 3-manifold [19] if $k=-\epsilon$ and $\epsilon k=-1$.

Lemma 2 A 3-dimensional $(N(k), \xi)$-semi-Riemannian manifold is a space form if and only if the scalar curvature $r=6 k$.

Consequently, for a 3-dimensional $(N(k), \xi)$-semi-Riemannian manifold, we have the following table:

\mathbf{M}	$\mathbf{S}=$	$\mathbf{r}=$
$N(k)$-contact metric	$\frac{1}{2}\{(r-2 k) g-(r-6 k) \eta \otimes \eta\}$	$6 k$
Sasakian	$\frac{1}{2}\{(r-2) g-(r-6) \eta \otimes \eta\}$	6
Kenmotsu	$\frac{1}{2}\{(r+2) g-(r+6) \eta \otimes \eta\}$	-6
(ϵ)-Sasakian	$\frac{1}{2}\{(r-2 \epsilon) g-\epsilon(r-6 \epsilon) \eta \otimes \eta\}$	6ϵ
para-Sasakian	$\frac{1}{2}\{(r+2) g-(r+6) \eta \otimes \eta\}$	-6
(ϵ)-para Sasakian	$\frac{1}{2}\{(r+2 \epsilon) g-\epsilon(r+6 \epsilon) \eta \otimes \eta\}$	-6ϵ

Proof. Let a 3 -dimensional $(N(k), \xi)$-semi-Riemannian manifold be an indefinite space form. Then

$$
\begin{equation*}
R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y\}, \quad X, Y, Z \in \chi(M) \tag{2.23}
\end{equation*}
$$

where c is the constant curvature of the manifold. By using the definition of Ricci curvature and (2.23) we have

$$
\begin{equation*}
S(X, Y)=2 c g(X, Y) \tag{2.24}
\end{equation*}
$$

If we use (2.24) in the definition of the scalar curvature we get

$$
\begin{equation*}
r=6 c . \tag{2.25}
\end{equation*}
$$

From (2.24) and (2.25) one can easily see that

$$
\begin{equation*}
S(X, Y)=\frac{r}{3} g(X, Y) \tag{2.26}
\end{equation*}
$$

By plugging $X=Y=\xi$ in (2.20) and using (2.26) we obtain

$$
\begin{equation*}
r=6 k . \tag{2.27}
\end{equation*}
$$

Conversely, if $r=6 k$, then from the equation (2.22) we can easily see that the manifold is a space form. This completes the proof.

3. Ricci-semi-symmetric $(N(k), \xi)$-semi-Riemannian 3-manifolds

A semi-Riemannian manifold M is said to be Ricci semi-symmetric [13] if its Ricci tensor S satisfies the condition

$$
\begin{equation*}
R(X, Y) \cdot S=0, \quad X, Y \in \chi(M) \tag{3.28}
\end{equation*}
$$

where $R(X, Y)$ acts as a derivation on S. Ricci-semisymmetric manifold is a generalization of manifold of constant curvature, Einstein manifold, Ricci symmetric manifold, symmetric manifold and semisymmetric manifold. Ricci-semisymmetric condition for Kenmotsu 3-manifolds, (ϵ)-para-Sasakian 3-manifolds and LP-Sasakian 3-manifolds are studied in [7], [19] and [16] respectively.

Let M be a Ricci-semi-symmetric $(N(k), \xi)$-semi-Riemannian 3-manifold. From (3.28) we have

$$
\begin{equation*}
S(R(X, Y) U, V)+S(U, R(X, Y) V)=0 \tag{3.29}
\end{equation*}
$$

If we put $X=\xi$ in (3.29) and use (2.14), then we get

$$
\begin{equation*}
k g(Y, U) S(\xi, V)-\epsilon K \eta(U) S(Y, V)+k g(Y, V) S(U, \xi)-\epsilon K \eta(V) S(U, Y)=0 \tag{3.30}
\end{equation*}
$$

By using (2.16) in (3.30) we obtain

$$
\begin{equation*}
\text { 1) } \epsilon K\{2 k g(Y, U) \eta(V)-\eta(U) S(Y, V)-2 k g(Y, V) \eta(U)-\eta(V) S(U, Y)\}=0 \text {. } \tag{3.31}
\end{equation*}
$$

Consider that $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis of the $T_{p} M, p \in M$. Then, by putting $X=U=e_{i}$ in (2.2) and taking the summation for $1 \leq i \leq 3$, we have

$$
\begin{equation*}
\epsilon k\{8 k \eta(V)-\epsilon S(V, \xi)-r \eta(V)\}=0 \tag{3.32}
\end{equation*}
$$

Again, by using (2.16) in (3.32), we get

$$
\begin{equation*}
\epsilon k(6 k-r) \eta(V)=0, \tag{3.33}
\end{equation*}
$$

which gives $r=6 k$. This implies, in view of Lemma 2, that the manifold is a space form.

Therefore, we have the following:
Theorem 1 A Ricci-semi-symmetric $(N(k), \xi)$-semi-Riemannian 3-manifold is a space form.

From Theorem 1 and the above table, we can state the following corollaries:
Corollary 1 A Ricci-semi-symmetric $N(k)$-contact metric 3-manifold is a manifold of constant scalar curvature $6 k$.

Corollary 2 A Ricci-semi-symmetric Sasakian 3-manifold is a manifold of constant positive scalar curvature 6 .

Corollary 3 [7] A Ricci-semi-symmetric Kenmotsu 3-manifold is a manifold of constant negative scalar curvature -6 .

Corollary 4 A Ricci-semi-symmetric (ϵ)-Sasakian 3-manifold is an indefinite space form.

Corollary 5 [2] A Ricci-semi-symmetric para-Sasakian 3-manifold is a manifold of constant negative scalar curvature -6 .

Corollary 6 [19] A Ricci-semi-symmetric (ϵ)-para-Sasakian 3-manifold is an indefinite space form.

4. Locally ϕ-symmetric $(N(k), \xi)$-semi-Riemannian 3 -manifolds

Definition 1 An $(N(k), \xi)$-semi-Riemannian manifold is said to be locally ϕ symmetric if

$$
\phi^{2}\left(\nabla_{W} R\right)(X, Y, Z)=0
$$

for all vector fields W, X, Y, Z orthogonal to ξ. This notion was introduced for Sasakian manifolds by Takahashi [17].

Now, differentiating (2.22) covariantly with respect to W, we get

$$
\begin{aligned}
\left(\nabla_{W} R\right)(X, Y, Z)= & \frac{1}{2}\left(\nabla_{W} r\right)\{g(Y, Z) X-g(X, Z) Y-g(Y, Z) \eta(X) \xi \\
& +g\left(X, Z_{\eta}(Y) \xi-\epsilon \eta(Y) \eta(Z) X+\epsilon \eta(X) \eta(Z) Y\right\} \\
& -\frac{(r-6 k)}{2}\left\{g(Y, Z)\left(\left(\nabla_{W} \eta\right)(X) \xi+\eta(X) \nabla_{W} \xi\right)\right. \\
& -g(X, Z)\left(\left(\nabla_{W} \eta\right)(Y) \xi+\eta(Y) \nabla_{W} \xi\right) \\
& +\epsilon\left(\left(\nabla_{W} \eta\right)(Y) \eta(Z) X+\left(\nabla_{W} \eta\right)(Z) \eta(Y) X\right) \\
& \left.-\epsilon\left(\left(\nabla_{W} \eta\right)(X) \eta(Z) Y+\left(\nabla_{W} \eta\right)(Z) \eta(X) Y\right)\right\}
\end{aligned}
$$

Taking W, X, Y, Z orthogonal to ξ, we have

$$
\begin{align*}
& \left(\nabla_{W} R\right)(X, Y, Z)=\frac{1}{2}\left(\nabla_{W} r\right)\{g(Y, Z) X-g(X, Z) Y\} \\
& \quad-\frac{(r-6 k)}{2}\left\{g(Y, Z)\left(\nabla_{W} \eta\right)(X) \xi-g(X, Z)\left(\nabla_{W} \eta\right)(Y) \xi\right\} \tag{4.34}
\end{align*}
$$

Applying ϕ^{2} on both sides of the above equation and using $\phi \cdot \xi=0$, we have

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right)=\frac{1}{2}\left(\nabla_{W} r\right)\left\{g(Y, Z) \phi^{2} X-g(X, Z) \phi^{2} Y\right\} \tag{4.35}
\end{equation*}
$$

Now taking X, Y are orthogonal to ξ, we obtain

$$
\begin{equation*}
\phi^{2}\left(\left(\nabla_{W} R\right)(X, Y, Z)\right)=-\frac{1}{2}\left(\nabla_{W} r\right)\{g(Y, Z) X-g(X, Z) Y\} \tag{4.36}
\end{equation*}
$$

Hence from (4.36), we can state the following:
Theorem 2 An $(N(k), \xi)$-semi-Riemannian 3-manifold is locally ϕ-symmetric if and only if the scalar curvature r is constant.

If an $(N(k), \xi)$-semi-Riemannian 3-manifold is Ricci semi-symmetric, then we have showed that $r=6 k$, that is r is constant.

Therefore, from Theorem (2), we have
Theorem 3 A Ricci-semi-symmetric $(N(k), \xi)$-semi-Riemannian 3-manifold is locally ϕ-symmetric.

5. $(N(k), \xi)$-semi-Riemannian 3-manifold with η-parallel Ricci tensor

Definition 2 The Ricci tensor S of an $(N(k), \xi)$-semi-Riemannian manifold M is called η-parallel if it satisfies

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(\phi X, \phi Y)=0 \tag{5.37}
\end{equation*}
$$

for all vector fields X, Y and Z. The notion of Ricci- η-parallelity for Sasakian manifolds was introduced by Kon in [11].

Now, let us consider a 3-dimensional $(N(k), \xi)$-semi-Riemannian manifold with η-parallel Ricci tensor. Then, from (2.20), we get

$$
\begin{equation*}
S(\phi X, \phi Y)=\frac{1}{2}(r-2 k)[g(\phi X, \phi Y)] . \tag{5.38}
\end{equation*}
$$

Differentiating (5.38) covariantly along Z, we have

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(\phi X, \phi Y)=\frac{1}{2} d r(Z) g(\phi X, \phi Y) \tag{5.39}
\end{equation*}
$$

If the Ricci tensor is η-parallel, then from (5.37) and (5.39) one can get

$$
\frac{1}{2} d r(Z) g(\phi X, \phi Y)=0
$$

From which, it follows that

$$
d r(Z)=0
$$

for all Z. This leads us to the following:

Theorem 4 Let M be an $(N(k), \xi)$-semi-Riemannian 3-manifold with η-parallel Ricci tensor. The the scalar curvature r is constant.

In view of Theorem (2) and Theorem (4), we have the following:

Theorem 5 An $(N(k), \xi)$-semi-Riemannian 3-manifold with η-parallel Ricci tensor is locally ϕ-symmetric.

Acknowledgement. The first author (DGP) is thankful to University Grants Commission, New Delhi, India for financial support in the form of Major Research Project [F.No. 39-30/2010 (SR), dated: 23-12-2012].

References

[1] Bagewadi, C.S., Prakasha, D.G., Venkatesha, On pseudo projective curvature tensor of a contact metric manifold, SUT J. Math., 43 (1)(2007), 115-126.
[2] Bagewadi, C.S., Basavarajappa, N.S., Prakasha, D.G., VenkateSHA, On 3-dimensional para-Sasakian manifolds, Int. e-Jour Engg. Math.: Theory and Application, 2 (2007), 110-119.
[3] Baikoussis, Ch., Blair, D.E., Kouforgiorgos, Th., A decomposition of the curvature tensor of a contact manifold satisfying $R(X, Y) \xi=$ $k(\eta(Y) X-\eta(X) Y)$, Mathematical Technical Report, Univesity of Iranniaana, 1992.
[4] Beem, J.K., Ehrlich, P.E., Global Lorentzian geometry, Marcel Dekker, New York, 1981.
[5] Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 509 (1976), 146.
[6] Blair, D.E., Kim, J.S., Tripathi, M.M. On the concircular curvature tensor of a contact metric manifold, J. Korean Math. Soc., 42 (5)(2005), 883-892.
[7] De, U.C., Pathak, G., On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math., 35 (2)(2004), 159-165.
[8] De, U.C., GaZI, A.K., On ϕ-recurrent $N(k)$-contact metric manifolds, Math. J. Okayama Univ., 50 (2008), 101-112.
[9] Duggal, K.L., Space time manifolds and contact structures, Int. J. Math \& Math. Sc., 13 (3) (1990), 55-553.
[10] Kenmotsu, K., A class of almost contact Riemannian manifold, Tohoku Math. J., 24 (2) (1972), 93-103.
[11] Kon, M., Invariant submanifolds in Sasakian manifolds, Math. Annalen, 219 (1976), 277-290.
[12] O'Neill, B., Semi-Rimannain geometry with applications to relativity, Academic Press, New York, London, 1983.
[13] Mirzoyan, V.A., Structure theorems for Riemannian Ric-semisymmetric spaces, Izv. Vyssh. Uchebn. Zaved. Mat., 6 (1992), 80-89.
[14] Sasaki, S., On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tohoku Math. J., 12 (1960), 459-476.
[15] Sato, I., On a structures similar to the almost contact structure, Tensor (N.S.), 30 (3) (1976), 219-224.
[16] Shaikh, A.A., De, U.C., On 3-dimensional LP-Sasakian manifolds, Soochow J. Math., 26 (4) (2000), 359-368.
[17] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tohoku Math.J., 21 (1969), 271-290.
[18] Tanno, S., Ricci curvatures of contact Riemannian manifolds, Tohoku Math. J., 40 (1988), 441-448.
[19] Tripathi, M.M., Kihc, E., Yuksel Perktas, S., Keles, S., On (ϵ)para Sasakian 3-manifolds, arXiv:0911.4786v2 [math.DG] 1 Dec 2009.
[20] Tripathi, M.M., Kihc, E., Yuksel Perktas, S., Keles, S., Indefinite almost paracontact metric manifolds, Int. J. Math. Math Sci., doi:10.1155/2010/846195.
[21] Tripathi, M.M., Gupta, P., On $(N(k), \xi)$-semi-Riemannian manifolds: Semisymmetries, Int. Electron. J. Geom., 5 (1) (2012), 42-77.
[22] Xufeng, X., Xiaoli, C., Two theorems on (ϵ)-Sasakian manifolds, Int. J. Math. \& Math. Sci., 21 (2) (1998), 249-254.

Accepted: 12.02.2013

