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Abstract: Hadooop is an open source implementation 

of google’s MapReduce framework. MapReduce is the 

heart of the apache’s hadoop. The file system which is 

used by the hadoop for storing the files is known as 

hadoop distributed file system(HDFS) which is an open 

source implementation of the google file system (GFS). 

Hadoop allows the parallel processing of the large data 

sets by splitting the larger data set into smaller partitions 

and each partition is fed to the separate task in the data 

node by the job tracker. The datanode is the node where 

the data actually resides. The task tracker resides on the 

data node and it runs the tasks and also reports the status 

of the tasks to the job tracker. In a MapReduce, the 

slowest running task decides the job completion time. If 

the task is slower, it delays the progress of the entire job. 

This slowest running task is known as the straggler. 

There can be many reasons for the straggler to occur. 

One of the reasons is the data skew. This paper reviews 

the different types of the data skew, where in 

MapReduce data skew can occur and what is the 

measure taken to overcome these problems.   
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1. INTRODUCTION 
Apache’s hadoop is an open source implementation of 

the google’s Map/reduce. World Wide Web has proved 

to be the efficient platform for developing applications 

which are data intensive in nature. As huge volumes of 

the data are generated day by day, more number of 

popular applications becomes data-intensive in nature. 

This makes the data mining and web indexing 

applications to access the largely expanding data sets 

ranging from gigabytes to several tera or peta bytes. By 

the help of the MapReduce model, the google processes 

the 20 peta bytes of the data per day in a parallel 

Fashion. The performance and the scalability of the 

MapReduce are increased because in a MapReduce 

model the large data set is split into many smaller 

partitions and the job is then partitioned into numerous 

smaller tasks. All these smaller tasks run on the multiple 

different nodes in a cluster.For example, YAHOO makes 

use of a cluster consisting of the 10,000 nodes to process 

hundreds of tera bytes of data generated.Facebook 

generates about 15 TB of data per day and it is also 

processed by the hadoop.Websites like, the amazon also 

makes use of the hadoop to process huge volumes of the 

data on daily basis. Scientific applications like the 

seismic simulation and NLP also makes use of the 

hadoop to the fullest. In a MapReduce, data locality 

determines the MapReduce performance. To prove to be 

the load balancer, the hadoop distributes the data across 

the nodes in a cluster based on available disk spaces. In 

case of homogenous environment, the computing and 

disk capacity are identical in all the nodes. However, in 

case of heterogenous environment, the nodes are not 

identical. Nodes differ in the computing capacity and 

disk capacity. So in this case some of the tasks may take 

unusually more time to complete than the tasks on the 

high performing nodes. These high performance nodes 

can complete processing data faster than low performing 

nodes. This causes the imbalance in the processing of 

data and thus the entire job is delayed by the slowest 

running task. This slowest running task which delays the 

execution of the entire job is known as the straggler [12].  

There can be various reasons for a straggler to occur. 

Straggler can occur because of many external and 

internal factors. In case of heterogenous environment, 

where the straggler occurs just because of the difference 

in the disk and the computing capacity, techniques like 

speculative execution can be used to overcome the 

issues.  However, in case of the homogenous 

environments the issue of the straggler cannot be 

resolved by means of the such techniques. One of the 

reasons for a straggler in the homogenous environment 

can be a data skew which cannot be resolved by simply 

transfering the task to the other machine. There is an 

increased demand for the user-defined operations (UDO) 

arising from the complex and advanced analytics of the 

data. 

 

2. HADOOP DISTRIBUTED FILE SYSTEM 

HDFS is an open source implementation of the google 

file system (GFS). HDFS is designed to store large files 

and all these files are stored on the clusters of 

commodity hardware [9]. The files that are meant to be 
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stored in the HDFS are of hundreds of megabytes, 

gigabytes or terabytes in size.  It can be a petabyte of a 

data as well. HDFS does not require any expensive or 

highly reliable hardware, but it just requires the 

commodity hardware which is the hardware that is 

commonly available. 

2.1 HDFS architecture 

The architecture of the HDFS consists of the specified 

nodes which are [6], [7], [9] NameNode  and DataNode 

and various daemon processes like Job tracker  and Task 

tracker. The NameNode is a  node which  does not store 

any actual data but it stores the meta data information 

about the data like number of the blocks,  on which rack  

and in which DataNode  the particular data block is 

stored in.  It also stores the information about the file 

system directory tree. The DataNode is the node which 

stores the actual data. The NameNode is the single point 

of failure and it is also considered as the center piece of 

the HDFS. The NameNode is the master node. 

Whenever any client application want to 

add/delete/move/copy any data from a file in HDFS,  it 

has to contact the NameNode directly. NameNode has a 

disadvantage that it is a single point of  failure and if it 

fails it is as if whole system fails. However, the newer 

versions of hadoop has a secondary NameNode on the 

separate machine. This keeps track of  images of the 

primary NameNode and  helps in case of a failure. The 

data node communicates with the NameNode by sending 

the heart beat messages after every 3 seconds.  If the 

DataNode does not communicate with the NameNode 

for a specified amount of time,  it is considered to be 

dead and the replication of the data blocks on that data 

node is performed on the other working DataNode.                                                  

Job tracker is a daemon process whose task is to submit 

and track the MapReduce jobs in hadoop. It submits the 

job to the job tracker.  Task tracker   is a daemon process 

that runs the tasks and also reports the status of the task 

to the job tracker. Thus the task tracker performs the 

tasks of the map and reduces. Task tracker runs on the 

DataNode. The concept of blocks is also in the HDFS. 

The size of the blocks in the HDFS is a larger unit of 

64MB by default. The larger block size in the HDFS is 

used to minimize the costs of seeks. Thus it takes more 

time to transfer the data from the disk than the time to 

seek to the start of the block. Consider the transfer rate 

of the 100MB/s and  a seek time of 10ms. To make the 

seek time 1% of the transfer time, the block size should 

be around 100MB. Thus the default size of the block is 

64 MB [3] but in some cases the block size is kept as 

128.  

 
Fig.1...Block diagram of HDFS architecture 

 

2.2 Main features of HDFS 

 Quick recovery: The architecture of the HDFS is 

built in such a way that there is a quick and 

automatic recovery when a fault is detected. HDFS 

consists of the large number of nodes and each 

node may store only a part of the file. Some nodes 

are non-functional and carry out the tasks of fault 

detection and reporting.  

 Access to data sets: In HDFS the main focus is on 

the high throughput of the data access. Applications 

that are developed to run on HDFS are not general 

purpose applications. They do not run on general 

purpose file system. Thus they need streaming type 

of access to the data sets stored in HDFS. HDFS 

provides a streaming type of data access to the 

applications designed to run on it. 

 Support for large files: The size of the file in HDFS 

ranges from the gigabytes to terabytes. HDFS 

provides a full support to such large file. It also 

provides high bandwidth to access such large files. 

 Portability: HDFS has been designed in such a way 

that it can be used in any platform. Thus we can 

make use of platform of our choice.                                                                               

 Moving just the computation than moving the data:  

When the size of the file is huge, it is efficient to 

move the computation near the data area other than 

moving data to the computation area. This saves a 

lot of bandwidth and also minimizes the network 

congestion. HDFS provides a full support to the 

applications to move the computation closer the 

area where data is located. This simplifies the 

operations in HDFS. 

2.3 Benefits of block level abstraction in HDFS   
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 We can have a larger file in the network than any 

single disk and the blocks of the file can be stored 

in any disks in the cluster. 

 Replication is done on these blocks thus the issues 

of fault tolerance and availability are easily met. 

Here each block is replicated at least 3 times on the 

separate physical machine thus providing protection 

against machine failure and data corruption. 

 The storage management is simplified by using the 

block level abstraction. By this way, it becomes 

very easy to calculate how much number of blocks 

can be stored on a particular disk and which block 

is on which disk. 

   

3. MAPREDUCE PROGRAMMING MODEL 
It is considered as the heart of the hadoop. MapReduce 

is an inherently parallel data processing programming 

model. There are various frameworks like the google 

MapReduce, Microsoft Dryad and Apache’s Hadoop 

which support MapReduce programming model [12]. 

Among all these, the Apache’s hadoop is an open 

source. The MapReduce programs run by the hadoop 

can be written in various languages like java, python, 

ruby and c++. All these MapReduce programs are data-

intensive in nature and process very large data sets in a 

parallel fashion. 

3.1 Data processing in MapReduce:    

The working of MapReduce is based on these two 

phases.Map phase consists of the Map function and 

Reduce phase consists of the Reduce function [9], [10]. 

The first phase is the map phase which takes the raw 

data such as the text file as the input. The input is 

divided into the several parts known as splits and each 

split is fed to the separate map task. The size of  the split 

is same as the size of the data block on the  HDFS. Map 

task transforms the input data into the (key, value) pairs 

which is also known as the intermediate data [1] , [2]. 

The map output is then fed to a combiner functions 

which is a user defined function. The combiner function 

output serves as the input to the reduce tasks. The 

combiner functions help to dispatch the (key,value) pairs 

that share the  same key to the same partition. The 

partitions are decided by a default paritioner such as 

hash partitioner or some user defined paritioners. The 

locations about these partitions are sent to the 

NameNode. The  NameNode then assigns a reduce tasks 

to the nodes and also passes the information about these 

partitions to the hose nodes. Thus the reduce nodes 

communicates with those partitiones and are fed by 

(key,value) pairs present in those partitiones. Thus the 

reduce task is performed which processes and simplifies 

the intermediate data. The reducer output is stored 

directly on the HDFS while the mapper output is stored 

on the local file system.                            

Hadoop provides the data locality optimization which 

helps to run a map task on the node where the input data 

resides on the HDFS.  The MapReduce always splits the 

input data for parallel process.  Each split is smaller as 

compared to whole file and thus each split takes less 

time to get processed.  So when we process the large 

number of splits in parallel, the processing is better load-

balanced. Hence, a faster machine will be able to process 

more splits over the course of the job than a slower 

machine. The splits must not be too small otherwise we 

may face an overhead of managing the splits.  In most 

cases, the size of splits is same as size of HDFS block 

(64MB) [8],[11]. If there is a single reduce task, the 

output from all the map tasks is fed to that single reduce 

task. Thus there is no data locality optimization in 

reduce tasks. Here the map outputs have to be 

transferred across the network to the node where the 

reduce task is carried out. To guarantee the reliability, 

the reduce outputs are stored in HDFS and are replicated 

across the nodes with one replica on the local node. BUT 

when there are multiple reducers, a partitioning function 

is needed to partition the map outputs into different 

partitiones. Each partition gets the (key,value) pairs with 

same keys. Thus the number of partitiones is equal to the 

number of different keys. 

 

                                                                
 

Fig. 2.  Working process of MapReduce 

 

3.3 Stragglers in MapReduce 

As discussed earlier, the straggler is the slowest running 

task which delays the execution of entire job [12]. 

Stragglers are caused by various factors. 

It is very easy to overcome the straggler caused by the 

external factors. The commonly used method is called as 

the speculative execution. If the machine is performing 

slowly, or if a machine fails or if there is any faulty 

hardware in the machine, we can overcome it by simply 



 

 

www.ijsret.org 

401 
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882  

 Volume 4, Issue 4, April 2015 

shifting the workload to some other machine which is 

performing well. 

 
 

Fig. 3.  Causes of Straggler 

 

In this way we can easily overcome the straggler issue. 

However, the speculative execution cannot be used when 

the straggler is caused by the internal factors of the data 

like the physical properties of data (height of persons, 

weight of persons), the speculative execution cannot be 

used because shifting the work load to other machine 

does not change the properties of the data and thus 

cannot overcome the straggler issue. This straggler 

caused by this issue is known as the data skew. Data 

skew can occur in both the phases of the MapReduce. 

When the data skew occurs in the Map phase, it can be 

easily mitigated by splitting the map tasks.  The more 

complex data, that takes time and is difficult to process, 

is responsible for the data skew on the Map phase. The 

data skew on the map phase is rarely observed.  The data 

skew on the reduce side is very difficult to overcome and 

is a challenging problem. A number of data-intensive 

applications like the data mining and web indexing 

applications as well as the scientific data-intensive 

applications have witnessed the same data skew 

problems. 

3.4 Types of data skew in MapReduce applications 

3.4.1 Map side data skew   

 There are three causes of data skew on the map side [4], 

[5]: 

 Slow performing cpu: The map tasks take the data 

and transform it into the (key,value) pairs. Each 

map task is given an equal amount of data so the 

focus here is on the amount of data to be processed 

and not on the time to process the data. Some of 

the machines which do not perform well take 

significantly large amount of time to process data 

than the one which perform well, thus causing the 

task to lag behind. 

 Complex map tasks: Each map task is assigned a 

data set of same size.  However, some of the map 

tasks are so complex that they require different 

processing and more time than other map tasks.  

This leads to a data skew on the map side. 

 Varying data distribution: The distribution of the 

input data to the map task may vary significantly. 

In some cases, the map task depends on the CPU 

intensive algorithms. Thus the runtime of such 

algorithms depend directly on the distribution of 

the input data. This leads to data- skew on the map 

side. 

3.4.2 Reduce side data skew: 

The various causes of the data skew on the reduce 

side are [5]: 

 Skew caused by partitioning: partitioning is the 

division of the intermediate data in such a way 

that the (key,value) pairs with the same key are 

placed in one partition which is fed into the same 

reducer. The default partitioner used is the hash- 

partitioner or some other user defined partitoner 

can also be used. However, even after evenly 

distribution of the data to the reducers by means 

of the partitioning functions, a reduce-side skew 

can still occur. Consider a scenario, when the 

partitioning function distributes the (key, value) 

pairs perfectly across the reducers, some reducers 

may still get more data because the (key,value)  

pairs that are assigned to it  contain more values 

than  others. The partitioning logic must not rely 

on the values computed during the map task 

otherwise it causes a skew on the reduce side. 

 Larger clusters: This type of reduce side skew 

caused by the complex map task in the map side. 

The reduce tasks process the data in the form of 

(key,value) pairs. Some of the reducers may get a 

single larger cluster and other reducers may get 

smaller clusters, giving rise to a data skew on the 

reduce side. In order to overcome this type of 

data skew, it should be able to split the larger 

cluster into smaller clusters and then distribute 

these data clusters evenly across the reducers to 

avoid the data skew. 

3.5 Existing solutions to DataSkew 

There is an increased demand for user defined operations 

(UDO) for advanced analytics of large data sets. 

MapReduce provides enough   supports writing UDO’s 

and using them for massive processing of large data sets. 

The user just has to write the Map and Reduce functions, 

API’s for writing UDO’s are provided by MapReduce. 

Skew is a known problem that occurs either in the Map 

phase or in the Reduce phase and it is related to parallel 

database management systems and adaptive or stream 

processing systems. One solution to mitigate skew is the 

implementation of skew-resistant operators. There is a 
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disadvantage in this approach that it imposes an extra 

burden on the operator writer. It only applies to 

operations that satisfy some specific properties.  Another 

technique involves dividing the work into smaller 

partitions and transferring these partitions to different 

machines when needed. Such a strategy imposes 

significant overhead due to either task migration or extra 

task scheduling.  

SkewTune is another technique for handling skew in 

parallel data processing in MapReduce [13].  

SkewTune is designed for MapReduce type 

programming model. Two properties of the 

MapReduce model on which the skewTune relies 

are: 

 MapReduce buffers the output of one operation 

before it is passed for the next operation. 

 MapReduce has an operator decoupling, where 

each operator processes data independently. 

SkewTune helps in mitigating skew and does not impact 

the fault-tolerance and scalability of MapReduce. Two 

very common types of skew are mitigated by SkewTune. 

Skew which is caused by varying or uneven distribution 

of data to partitions and skew which is caused by some 

larger data sets that take   longer time to process than 

others. 

3.5.1 Some key features of SkewTune are: 

 SkewTune is compatible with MapReduce 

programmes. There is no need to change even a 

single line of the code. 

 SkewTune guarantees that the output of any 

operation consists of the same number of 

partitions and also preserves the total ordering of 

the data in those partitiones. 

 When a skew arises the SkewTune  reduces the 

processing times by factor of 4 and also adds a 

very low overhead when there is no skew  

3.5.2 Working of SkewTune: 

The working principle of the SkewTune [13] depends on 

re-allocation of the parts of straggler to the slots which 

are fast working or which have already completed its 

task. Consider the following figure. 

Here, the job completion time of the     entire job is 

decided by the slowest running task (straggler) which is 

task T2 in this case [13]. First the SkewTune detects the 

straggler and tries to mitigate it. It re-partitiones the task 

T2 in such a way that it allocates the partitiones to every 

slot available. Once the slot becomes available, it starts 

running part of the T2 task (straggler) which was 

allocated to it as shown in the figure B. 

 

 
Fig.4. Data Skew caused due to straggler (without 

skewtune) 

 

 
Fig. 5. Mitigation of the straggler using    SkewTune 

 

Here the task T2 is re-partitioned in to three tasks (T2a, 

T2b, and T2c). The task T1 completes before every task, 

so it gets the T2b part of the T2 and Task T3 completes 

after Task T1 finishes so it gets the T2c part of the task 

T2.  In this way every task finishes at around the same 

time. 

     Another already existing technique for 

mitigating the reduce side skew is known as LIBRA 

(light weight implementation of the balanced range 

assignment) [12]. It uses an efficient technique to 

balance the work load among reduce tasks by splitting 

the larger data sets. LIBRA can also balance the work 

load in case of heterogenous environment with no data 

skew. In order to solve the data skew problems, LIBRA 

makes use of the new sampling method which integrates 

a small percentage of the sample tasks into the normal 

map tasks. These sampling tasks are given a preference 

over the normal map tasks and they collect the statistics 

about the distribution of the input data. Sampling tasks 

transmit information about the input distribution to the 

master node. The master then upon receiving sample 

information from different sample tasks derives an 

estimate about the data distribution. Based on this 

sample information, the master makes decision about 

partitioning and sends this partitioning information to 

worker nodes. Thus it becomes easy for the worker 

nodes to partition the intermediate data without any extra 

overhead. There are various sampling methods like 
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random sampler, interval sampler, and split sampler. But 

none of these could be used because we cannot achieve 

good approximation about the distribution of input data. 

LIBRA uses its own sampling method. 

3.6 Large cluster splitting in LIBRA to mitigate 

reduce side-skew 
In a MapReduce framework, each cluster is processed by 

a different reducer. The number of keys is equal to the 

number of clusters as each cluster has different key. So if 

the cluster is larger than other clusters, the reducer it is 

allocated to takes longer time than other reducers [12] 

[3]. This leads to data skew on the reduce side. Consider 

key1, key2, key3 are three keys associated with the 

intermediate data with the values as 100, 10, 10 

respectively. When we partition them into two reducers, 

one of the reducer gets key with value 100 and other 

reducer gets two keys each having value 10. Thus the 

reducer 1 gets more data to be processed than the 

reducer 2, leading to data skew. To mitigate this LIBRA 

provides the larger cluster splitting technique. Using this 

technique, we can split the larger cluster in such a way 

that 60% of the cluster with key1 is allocated to reducer 

1 and the rest 40% is allocated to reducer 2. Thus it 

balances the load among the reducers and overcomes the 

data skew issue as shown in figure below. 

 

 
 

Fig. 6.   Large cluster split to mitigate reduce-side 

skew 

 

4. CONCLUSION: 
To improve the data processing performance in 

MapReduce, it is important to mitigate the data skew 

caused in any phase of MapReduce (Map phase or 

Reduce phase). This paper is a survey of the already 

existing technique for mitigating the data skew in 

MapReduce applications. SkewTune is one of the 

technique which does not require any special input from 

the user instead it observes the complete execution of the 

job and automatically re-partitiones  the un processed 

data among many tasks as they become available. It 

maintains the total ordering and partitioning decisions on 

the input data. The performance is increased 4 times on a 

normal MapReduce jobs. 

The other technique used is known as LIBRA. LIBRA is 

mostly used for mitigating the reduce-side skew. It 

supports the splitting of the large data cluster so that 

there is no imbalance in the data allocation to reducers. 

There is a minimal and negligible overhead caused by 

the sampling method used in LIBRA. Here sample and 

map operations are combined and these operations take 

the same time as the normal map operations take. 

LIBRA increases the reduce side job execution time by 

partitioning the intermediate data more evenly. 
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