

www.ijsret.org

398
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

A Survey on Hadoop MapReduce Framework and the Data Skew Issues

Nawab Wajid, Prof. Satish S, Prof. Manjunath T N

Department of Information Science and Engineering,

Acharya institute of technology, Soldevanahalli, Bengaluru, Karnataka

Abstract: Hadooop is an open source implementation

of google’s MapReduce framework. MapReduce is the

heart of the apache’s hadoop. The file system which is

used by the hadoop for storing the files is known as

hadoop distributed file system(HDFS) which is an open

source implementation of the google file system (GFS).

Hadoop allows the parallel processing of the large data

sets by splitting the larger data set into smaller partitions

and each partition is fed to the separate task in the data

node by the job tracker. The datanode is the node where

the data actually resides. The task tracker resides on the

data node and it runs the tasks and also reports the status

of the tasks to the job tracker. In a MapReduce, the

slowest running task decides the job completion time. If

the task is slower, it delays the progress of the entire job.

This slowest running task is known as the straggler.

There can be many reasons for the straggler to occur.

One of the reasons is the data skew. This paper reviews

the different types of the data skew, where in

MapReduce data skew can occur and what is the

measure taken to overcome these problems.

Indexterms- MapReduce, HDFS, straggler, data skew.

1. INTRODUCTION
Apache’s hadoop is an open source implementation of

the google’s Map/reduce. World Wide Web has proved

to be the efficient platform for developing applications

which are data intensive in nature. As huge volumes of

the data are generated day by day, more number of

popular applications becomes data-intensive in nature.

This makes the data mining and web indexing

applications to access the largely expanding data sets

ranging from gigabytes to several tera or peta bytes. By

the help of the MapReduce model, the google processes

the 20 peta bytes of the data per day in a parallel

Fashion. The performance and the scalability of the

MapReduce are increased because in a MapReduce

model the large data set is split into many smaller

partitions and the job is then partitioned into numerous

smaller tasks. All these smaller tasks run on the multiple

different nodes in a cluster.For example, YAHOO makes

use of a cluster consisting of the 10,000 nodes to process

hundreds of tera bytes of data generated.Facebook

generates about 15 TB of data per day and it is also

processed by the hadoop.Websites like, the amazon also

makes use of the hadoop to process huge volumes of the

data on daily basis. Scientific applications like the

seismic simulation and NLP also makes use of the

hadoop to the fullest. In a MapReduce, data locality

determines the MapReduce performance. To prove to be

the load balancer, the hadoop distributes the data across

the nodes in a cluster based on available disk spaces. In

case of homogenous environment, the computing and

disk capacity are identical in all the nodes. However, in

case of heterogenous environment, the nodes are not

identical. Nodes differ in the computing capacity and

disk capacity. So in this case some of the tasks may take

unusually more time to complete than the tasks on the

high performing nodes. These high performance nodes

can complete processing data faster than low performing

nodes. This causes the imbalance in the processing of

data and thus the entire job is delayed by the slowest

running task. This slowest running task which delays the

execution of the entire job is known as the straggler [12].

There can be various reasons for a straggler to occur.

Straggler can occur because of many external and

internal factors. In case of heterogenous environment,

where the straggler occurs just because of the difference

in the disk and the computing capacity, techniques like

speculative execution can be used to overcome the

issues. However, in case of the homogenous

environments the issue of the straggler cannot be

resolved by means of the such techniques. One of the

reasons for a straggler in the homogenous environment

can be a data skew which cannot be resolved by simply

transfering the task to the other machine. There is an

increased demand for the user-defined operations (UDO)

arising from the complex and advanced analytics of the

data.

2. HADOOP DISTRIBUTED FILE SYSTEM

HDFS is an open source implementation of the google

file system (GFS). HDFS is designed to store large files

and all these files are stored on the clusters of

commodity hardware [9]. The files that are meant to be

www.ijsret.org

399
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

stored in the HDFS are of hundreds of megabytes,

gigabytes or terabytes in size. It can be a petabyte of a

data as well. HDFS does not require any expensive or

highly reliable hardware, but it just requires the

commodity hardware which is the hardware that is

commonly available.

2.1 HDFS architecture

The architecture of the HDFS consists of the specified

nodes which are [6], [7], [9] NameNode and DataNode

and various daemon processes like Job tracker and Task

tracker. The NameNode is a node which does not store

any actual data but it stores the meta data information

about the data like number of the blocks, on which rack

and in which DataNode the particular data block is

stored in. It also stores the information about the file

system directory tree. The DataNode is the node which

stores the actual data. The NameNode is the single point

of failure and it is also considered as the center piece of

the HDFS. The NameNode is the master node.

Whenever any client application want to

add/delete/move/copy any data from a file in HDFS, it

has to contact the NameNode directly. NameNode has a

disadvantage that it is a single point of failure and if it

fails it is as if whole system fails. However, the newer

versions of hadoop has a secondary NameNode on the

separate machine. This keeps track of images of the

primary NameNode and helps in case of a failure. The

data node communicates with the NameNode by sending

the heart beat messages after every 3 seconds. If the

DataNode does not communicate with the NameNode

for a specified amount of time, it is considered to be

dead and the replication of the data blocks on that data

node is performed on the other working DataNode.

Job tracker is a daemon process whose task is to submit

and track the MapReduce jobs in hadoop. It submits the

job to the job tracker. Task tracker is a daemon process

that runs the tasks and also reports the status of the task

to the job tracker. Thus the task tracker performs the

tasks of the map and reduces. Task tracker runs on the

DataNode. The concept of blocks is also in the HDFS.

The size of the blocks in the HDFS is a larger unit of

64MB by default. The larger block size in the HDFS is

used to minimize the costs of seeks. Thus it takes more

time to transfer the data from the disk than the time to

seek to the start of the block. Consider the transfer rate

of the 100MB/s and a seek time of 10ms. To make the

seek time 1% of the transfer time, the block size should

be around 100MB. Thus the default size of the block is

64 MB [3] but in some cases the block size is kept as

128.

Fig.1...Block diagram of HDFS architecture

2.2 Main features of HDFS

 Quick recovery: The architecture of the HDFS is

built in such a way that there is a quick and

automatic recovery when a fault is detected. HDFS

consists of the large number of nodes and each

node may store only a part of the file. Some nodes

are non-functional and carry out the tasks of fault

detection and reporting.

 Access to data sets: In HDFS the main focus is on

the high throughput of the data access. Applications

that are developed to run on HDFS are not general

purpose applications. They do not run on general

purpose file system. Thus they need streaming type

of access to the data sets stored in HDFS. HDFS

provides a streaming type of data access to the

applications designed to run on it.

 Support for large files: The size of the file in HDFS

ranges from the gigabytes to terabytes. HDFS

provides a full support to such large file. It also

provides high bandwidth to access such large files.

 Portability: HDFS has been designed in such a way

that it can be used in any platform. Thus we can

make use of platform of our choice.

 Moving just the computation than moving the data:

When the size of the file is huge, it is efficient to

move the computation near the data area other than

moving data to the computation area. This saves a

lot of bandwidth and also minimizes the network

congestion. HDFS provides a full support to the

applications to move the computation closer the

area where data is located. This simplifies the

operations in HDFS.

2.3 Benefits of block level abstraction in HDFS

www.ijsret.org

400
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

 We can have a larger file in the network than any

single disk and the blocks of the file can be stored

in any disks in the cluster.

 Replication is done on these blocks thus the issues

of fault tolerance and availability are easily met.

Here each block is replicated at least 3 times on the

separate physical machine thus providing protection

against machine failure and data corruption.

 The storage management is simplified by using the

block level abstraction. By this way, it becomes

very easy to calculate how much number of blocks

can be stored on a particular disk and which block

is on which disk.

3. MAPREDUCE PROGRAMMING MODEL
It is considered as the heart of the hadoop. MapReduce

is an inherently parallel data processing programming

model. There are various frameworks like the google

MapReduce, Microsoft Dryad and Apache’s Hadoop

which support MapReduce programming model [12].

Among all these, the Apache’s hadoop is an open

source. The MapReduce programs run by the hadoop

can be written in various languages like java, python,

ruby and c++. All these MapReduce programs are data-

intensive in nature and process very large data sets in a

parallel fashion.

3.1 Data processing in MapReduce:

The working of MapReduce is based on these two

phases.Map phase consists of the Map function and

Reduce phase consists of the Reduce function [9], [10].

The first phase is the map phase which takes the raw

data such as the text file as the input. The input is

divided into the several parts known as splits and each

split is fed to the separate map task. The size of the split

is same as the size of the data block on the HDFS. Map

task transforms the input data into the (key, value) pairs

which is also known as the intermediate data [1] , [2].

The map output is then fed to a combiner functions

which is a user defined function. The combiner function

output serves as the input to the reduce tasks. The

combiner functions help to dispatch the (key,value) pairs

that share the same key to the same partition. The

partitions are decided by a default paritioner such as

hash partitioner or some user defined paritioners. The

locations about these partitions are sent to the

NameNode. The NameNode then assigns a reduce tasks

to the nodes and also passes the information about these

partitions to the hose nodes. Thus the reduce nodes

communicates with those partitiones and are fed by

(key,value) pairs present in those partitiones. Thus the

reduce task is performed which processes and simplifies

the intermediate data. The reducer output is stored

directly on the HDFS while the mapper output is stored

on the local file system.

Hadoop provides the data locality optimization which

helps to run a map task on the node where the input data

resides on the HDFS. The MapReduce always splits the

input data for parallel process. Each split is smaller as

compared to whole file and thus each split takes less

time to get processed. So when we process the large

number of splits in parallel, the processing is better load-

balanced. Hence, a faster machine will be able to process

more splits over the course of the job than a slower

machine. The splits must not be too small otherwise we

may face an overhead of managing the splits. In most

cases, the size of splits is same as size of HDFS block

(64MB) [8],[11]. If there is a single reduce task, the

output from all the map tasks is fed to that single reduce

task. Thus there is no data locality optimization in

reduce tasks. Here the map outputs have to be

transferred across the network to the node where the

reduce task is carried out. To guarantee the reliability,

the reduce outputs are stored in HDFS and are replicated

across the nodes with one replica on the local node. BUT

when there are multiple reducers, a partitioning function

is needed to partition the map outputs into different

partitiones. Each partition gets the (key,value) pairs with

same keys. Thus the number of partitiones is equal to the

number of different keys.

Fig. 2. Working process of MapReduce

3.3 Stragglers in MapReduce

As discussed earlier, the straggler is the slowest running

task which delays the execution of entire job [12].

Stragglers are caused by various factors.

It is very easy to overcome the straggler caused by the

external factors. The commonly used method is called as

the speculative execution. If the machine is performing

slowly, or if a machine fails or if there is any faulty

hardware in the machine, we can overcome it by simply

www.ijsret.org

401
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

shifting the workload to some other machine which is

performing well.

Fig. 3. Causes of Straggler

In this way we can easily overcome the straggler issue.

However, the speculative execution cannot be used when

the straggler is caused by the internal factors of the data

like the physical properties of data (height of persons,

weight of persons), the speculative execution cannot be

used because shifting the work load to other machine

does not change the properties of the data and thus

cannot overcome the straggler issue. This straggler

caused by this issue is known as the data skew. Data

skew can occur in both the phases of the MapReduce.

When the data skew occurs in the Map phase, it can be

easily mitigated by splitting the map tasks. The more

complex data, that takes time and is difficult to process,

is responsible for the data skew on the Map phase. The

data skew on the map phase is rarely observed. The data

skew on the reduce side is very difficult to overcome and

is a challenging problem. A number of data-intensive

applications like the data mining and web indexing

applications as well as the scientific data-intensive

applications have witnessed the same data skew

problems.

3.4 Types of data skew in MapReduce applications

3.4.1 Map side data skew

 There are three causes of data skew on the map side [4],

[5]:

 Slow performing cpu: The map tasks take the data

and transform it into the (key,value) pairs. Each

map task is given an equal amount of data so the

focus here is on the amount of data to be processed

and not on the time to process the data. Some of

the machines which do not perform well take

significantly large amount of time to process data

than the one which perform well, thus causing the

task to lag behind.

 Complex map tasks: Each map task is assigned a

data set of same size. However, some of the map

tasks are so complex that they require different

processing and more time than other map tasks.

This leads to a data skew on the map side.

 Varying data distribution: The distribution of the

input data to the map task may vary significantly.

In some cases, the map task depends on the CPU

intensive algorithms. Thus the runtime of such

algorithms depend directly on the distribution of

the input data. This leads to data- skew on the map

side.

3.4.2 Reduce side data skew:

The various causes of the data skew on the reduce

side are [5]:

 Skew caused by partitioning: partitioning is the

division of the intermediate data in such a way

that the (key,value) pairs with the same key are

placed in one partition which is fed into the same

reducer. The default partitioner used is the hash-

partitioner or some other user defined partitoner

can also be used. However, even after evenly

distribution of the data to the reducers by means

of the partitioning functions, a reduce-side skew

can still occur. Consider a scenario, when the

partitioning function distributes the (key, value)

pairs perfectly across the reducers, some reducers

may still get more data because the (key,value)

pairs that are assigned to it contain more values

than others. The partitioning logic must not rely

on the values computed during the map task

otherwise it causes a skew on the reduce side.

 Larger clusters: This type of reduce side skew

caused by the complex map task in the map side.

The reduce tasks process the data in the form of

(key,value) pairs. Some of the reducers may get a

single larger cluster and other reducers may get

smaller clusters, giving rise to a data skew on the

reduce side. In order to overcome this type of

data skew, it should be able to split the larger

cluster into smaller clusters and then distribute

these data clusters evenly across the reducers to

avoid the data skew.

3.5 Existing solutions to DataSkew

There is an increased demand for user defined operations

(UDO) for advanced analytics of large data sets.

MapReduce provides enough supports writing UDO’s

and using them for massive processing of large data sets.

The user just has to write the Map and Reduce functions,

API’s for writing UDO’s are provided by MapReduce.

Skew is a known problem that occurs either in the Map

phase or in the Reduce phase and it is related to parallel

database management systems and adaptive or stream

processing systems. One solution to mitigate skew is the

implementation of skew-resistant operators. There is a

www.ijsret.org

402
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

disadvantage in this approach that it imposes an extra

burden on the operator writer. It only applies to

operations that satisfy some specific properties. Another

technique involves dividing the work into smaller

partitions and transferring these partitions to different

machines when needed. Such a strategy imposes

significant overhead due to either task migration or extra

task scheduling.

SkewTune is another technique for handling skew in

parallel data processing in MapReduce [13].

SkewTune is designed for MapReduce type

programming model. Two properties of the

MapReduce model on which the skewTune relies

are:

 MapReduce buffers the output of one operation

before it is passed for the next operation.

 MapReduce has an operator decoupling, where

each operator processes data independently.

SkewTune helps in mitigating skew and does not impact

the fault-tolerance and scalability of MapReduce. Two

very common types of skew are mitigated by SkewTune.

Skew which is caused by varying or uneven distribution

of data to partitions and skew which is caused by some

larger data sets that take longer time to process than

others.

3.5.1 Some key features of SkewTune are:

 SkewTune is compatible with MapReduce

programmes. There is no need to change even a

single line of the code.

 SkewTune guarantees that the output of any

operation consists of the same number of

partitions and also preserves the total ordering of

the data in those partitiones.

 When a skew arises the SkewTune reduces the

processing times by factor of 4 and also adds a

very low overhead when there is no skew

3.5.2 Working of SkewTune:

The working principle of the SkewTune [13] depends on

re-allocation of the parts of straggler to the slots which

are fast working or which have already completed its

task. Consider the following figure.

Here, the job completion time of the entire job is

decided by the slowest running task (straggler) which is

task T2 in this case [13]. First the SkewTune detects the

straggler and tries to mitigate it. It re-partitiones the task

T2 in such a way that it allocates the partitiones to every

slot available. Once the slot becomes available, it starts

running part of the T2 task (straggler) which was

allocated to it as shown in the figure B.

Fig.4. Data Skew caused due to straggler (without

skewtune)

Fig. 5. Mitigation of the straggler using SkewTune

Here the task T2 is re-partitioned in to three tasks (T2a,

T2b, and T2c). The task T1 completes before every task,

so it gets the T2b part of the T2 and Task T3 completes

after Task T1 finishes so it gets the T2c part of the task

T2. In this way every task finishes at around the same

time.

 Another already existing technique for

mitigating the reduce side skew is known as LIBRA

(light weight implementation of the balanced range

assignment) [12]. It uses an efficient technique to

balance the work load among reduce tasks by splitting

the larger data sets. LIBRA can also balance the work

load in case of heterogenous environment with no data

skew. In order to solve the data skew problems, LIBRA

makes use of the new sampling method which integrates

a small percentage of the sample tasks into the normal

map tasks. These sampling tasks are given a preference

over the normal map tasks and they collect the statistics

about the distribution of the input data. Sampling tasks

transmit information about the input distribution to the

master node. The master then upon receiving sample

information from different sample tasks derives an

estimate about the data distribution. Based on this

sample information, the master makes decision about

partitioning and sends this partitioning information to

worker nodes. Thus it becomes easy for the worker

nodes to partition the intermediate data without any extra

overhead. There are various sampling methods like

www.ijsret.org

403
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

random sampler, interval sampler, and split sampler. But

none of these could be used because we cannot achieve

good approximation about the distribution of input data.

LIBRA uses its own sampling method.

3.6 Large cluster splitting in LIBRA to mitigate

reduce side-skew
In a MapReduce framework, each cluster is processed by

a different reducer. The number of keys is equal to the

number of clusters as each cluster has different key. So if

the cluster is larger than other clusters, the reducer it is

allocated to takes longer time than other reducers [12]

[3]. This leads to data skew on the reduce side. Consider

key1, key2, key3 are three keys associated with the

intermediate data with the values as 100, 10, 10

respectively. When we partition them into two reducers,

one of the reducer gets key with value 100 and other

reducer gets two keys each having value 10. Thus the

reducer 1 gets more data to be processed than the

reducer 2, leading to data skew. To mitigate this LIBRA

provides the larger cluster splitting technique. Using this

technique, we can split the larger cluster in such a way

that 60% of the cluster with key1 is allocated to reducer

1 and the rest 40% is allocated to reducer 2. Thus it

balances the load among the reducers and overcomes the

data skew issue as shown in figure below.

Fig. 6. Large cluster split to mitigate reduce-side

skew

4. CONCLUSION:
To improve the data processing performance in

MapReduce, it is important to mitigate the data skew

caused in any phase of MapReduce (Map phase or

Reduce phase). This paper is a survey of the already

existing technique for mitigating the data skew in

MapReduce applications. SkewTune is one of the

technique which does not require any special input from

the user instead it observes the complete execution of the

job and automatically re-partitiones the un processed

data among many tasks as they become available. It

maintains the total ordering and partitioning decisions on

the input data. The performance is increased 4 times on a

normal MapReduce jobs.

The other technique used is known as LIBRA. LIBRA is

mostly used for mitigating the reduce-side skew. It

supports the splitting of the large data cluster so that

there is no imbalance in the data allocation to reducers.

There is a minimal and negligible overhead caused by

the sampling method used in LIBRA. Here sample and

map operations are combined and these operations take

the same time as the normal map operations take.

LIBRA increases the reduce side job execution time by

partitioning the intermediate data more evenly.

REFERENCES
[1]. Joe B. Buck,Noah Watkins, Jeff LeFevre, Kleoni

Ioannidou, Carlos Maltzahn, Neokli Polyzotis, Scott

Brandt, “SciHadoop: Array-based Query Processing in

Hadoop”, UC Santa Cruz, Dept. of Computer Science.

[2]. Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding,

Yun Tian,James Majors, Adam Manzanares, and Xiao

Qin, “Improving MapReduce Performance through Data

Placement in Heterogeneous Hadoop

Clusters”,Department of Computer Science and

Software Engineering Auburn University, Auburn, AL

36849-5347.

[3]. Benjamin Gufler
1
, Nikolaus Augsten

2
, Angelika

Reiser
2
 and Alfons Kempe “Handling data skew in

MapReduce”,
1
Technische Universit¨at M¨unchen,

M¨unchen, Germany
2
Free University of Bozen-Bolzano,

Bolzano, Italy

[4]. YongChul Kwon
1
, Kai Ren

2
, Magdalena

Balazinska
1
, and Bill Howe

1
, “Managing Skew in

Hadoop”,
1
University of Washington,

2
Carnegie Mellon

University.

[5]. YongChul Kwon, Magdalena Balazinska, Bill

Howe, “A Study of Skew in MapReduce Applications”,

University of Washington, USA

[6]. JinWoo Lee, SyKyoung Kim, “Study for

Performance Improvement of Parallel Process According

to Analysis of Hadoop”, Computer Engineering Hanbat

National University Daejeon, Korea

[7]. Weijia Xu, Wei Luo, Nicholas Woodward,

“Analysis and Optimization of Data Import with

Hadoop”, 2012 IEEE 26th International Parallel and

Distributed Processing Symposium Workshops & PhD

Forum.

[8].Da-Wei, Zhang, Fu-Quan, Sun,Xu Cheng and Chao

Liu, “Research on Hadoop-based Enterprise File Cloud

Storage System” Information Technology and Business

Management Department Dalian Neusoft Institute of

Information Dalian, China

www.ijsret.org

404
International Journal of Scientific Research Engineering & Technology (IJSRET), ISSN 2278 – 0882

 Volume 4, Issue 4, April 2015

[9]. AiLing Duan, “Research and Application of

Distributed Parallel Search Hadoop Algorithm”, 2012

International Conference on Systems and Informatics

(ICSAI 2012).

[10]. AiLing Duan , HaiFang Si , 1.School of

Information Science and Engineering, Henan University

of Technology, Zhengzhou,450001, China, “Research

and Practice of Distributed Parallel Search Algorithm on

Hadoop_MapReduce” , 2012 International Conference

on Control Engineering and Communication Technology

[11]. Tom white, “Hadoop: the definitive guide”.

[12]. Qi Chen, Jinyu Yao, and Zhen Xiao, Senior

Member, IEEE, “LIBRA: Lightweight DataSkew

Mitigation in MapReduce” , IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS.

[13]. YongChul Kwon, Magdalena Balazinska, Bill

Howe, Jerome Rolia University of Washington, HP

Labs, “SkewTune in Action: Mitigating Skew in

MapReduce Applications”.

