

Sixth Semester B.E. Degree Examination, August 2020 (ELECTRICAL & ELECTRONICS ENGINEERING)

COMPUTER AIDED ELECTRICAL DRAWING

Time: 3 hrs Max. Marks: 100

Instructions:

- 1. Answer Question 1 and Question 2 from Part A
- 2. Answer Question 3 or Question 4 from Part B
- 3. Use of CAD tool that satisfies the requirements of the syllabus is permitted. Suitable data may be assumed if not given.

Part A

1. Draw a developed winding diagram for a 4 pole, 28 slots, single layer, progressive, simplex wave winding for DC generator armature. Show the poles, sequence diagram, connection table and the other details.

OR

Draw the developed winding diagram of an AC machine having the following details.

30 Marks

No. of phase = 3

No. of poles = 6

No. of slots = 36 Unbifurcated winding in 2 tiers.

- 2. Draw single line diagram of a generating substation having the following main equipments:
 - a) Alternators: Four, 10MVA, 11kV, 3phase, 50Hz, Y connected
 - b) Step-up transformers: Four,12MVA,11/110kV, \triangle / Y, 3 phase, 50Hz
 - c) Bus: 110kV double bus with a bus coupler
 - d) Outgoing transmission lines: Five, 110kV
 - e) Station auxiliary transformers : Two, 500kVA, 11kV/400V, \triangle/Y , 3 phase, 50Hz

Also indicate the positions of CT, PT, isolating switches, lighting arresters, circuit breakers.

Part B

3. Draw to suitable scale, the half sectional elevation and plan of a 10KVA, 50 Marks 50 Hz, 1100/110V single phase, shell type transformer with following data:

Magnetic circuit:

Central leg = 70 mm x 93.5 mm Outer leg = 70 mm x 46.7 mm Yoke = 70 mm x 57.2 mm Window = 200 mm x 75 mm

HV winding:

Number of turns = 1000 Number of layers = 12 Dimensions of insulated conductor = 2.1 mm x 2.1 mm Height of the coil = 178.5 mm The coil is divided into two sections with 6.35mm duct in between, through which the HV leads are brought out. Depth of each section = 15.6 mm

LV winding:

Number of turns = 100

Wound in two sections, layers/section = 2

Dimensions of insulated conductor = 4.67 mm x 7 mm

Height of the coil = 182 mm

Depth of each section = 9.94 mm

Insulation:

Between layers = 0.6 mm

Between core and LV winding = 2.5 mm

Between LV and HV = 3.81 mm

Between yoke and end of coils: for LV coils 4mm mica pad and 5 mm pressboard spacer blocks, for HV coils:

3.175 mm mica pad & 7.575 mm pressboard spacer blocks.

OR

4. Draw the General Assembly of a DC Machine in end view. The machine has the following data-

50 Marks

Rating: 18.5 kW, 4 Pole, 220 v, 1500 rpm

Armature diameter = 0.18 m

Core length = 0.2 m

36 slots of dimension 8mm x 24 mm

Shaft diameter = 55 mm

Pole arc/ Pole pitch = 0.6666 Pole height = 65 mm Pole width = 60 mm Yoke Thickness = 35 mm Air gap between stator and rotor = 2 mm i)The armature is directly resting on the shaft. ii)10 Nos. of ventilating holes, on a PCD of 96mm.

* * * * *