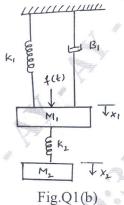


CBCS SCHEME

15EE61

Sixth Semester B.E. Degree Examination, Aug./Sept.2020 Control Systems


Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define control systems. Explain with examples open loop and closed loop systems. List the merits and demerits of open loop and closed loop systems. (08 Marks)
 - b. For the mechanical system shown in Fig.Q1(b), find the transfer function $\frac{X_2(s)}{F(s)}$.

(08 Marks)

OR

2 a. Find the transfer function, for the electromechanical system shown in Fig.Q2(a), i.e. $\frac{X(s)}{E(s)}$.

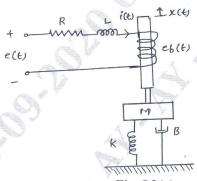
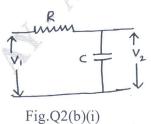
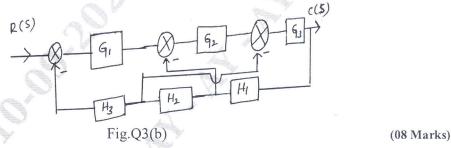



Fig.Q2(a)

(08 Marks)

b. Show that two systems shown in Fig.Q2(b)(i) and (ii) are analogous systems by comparing their transfer functions.

1 Jx, √f(+)


Fig.Q2(b)(ii)

(08 Marks)

Module-2
What is block diagram representation. For the negative feedback control system, starting from the fundamentals show that the closed loop transfer function $M(s) = \frac{1}{s} \left(\frac{1}{s} \right) \left(\frac{1}{s} \right)$ (Dg.Dh + Ng.Nh)

where $G(s) = \frac{Ng}{Dg}$; $H(s) = \frac{Nh}{Dh}$. (08 Marks)

b. Find $\frac{C(s)}{R(s)}$ for the system shown in Fig.Q3(b) using block diagram reduction rules.

OR

Using Maron's gain formula, find the gain of following system in Fig.Q4(a).

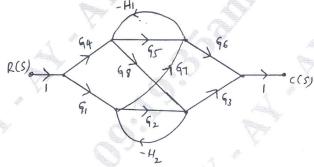
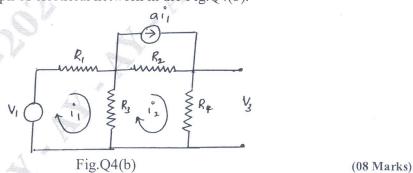



Fig.Q4(a) (08 Marks)

b. Draw the signal flow graph of electrical network in the Fig.Q4(b).

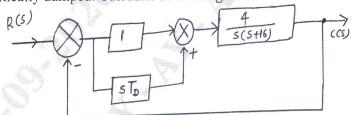
Module-3

- Draw the sketch of underdamped second order system, with unit step input, show the various specifications on it and define them. (08 Marks)
 - An unity feedback system has $G(s) = \frac{20(1+s)}{s^2(2+s)(4+s)}$, calculate its steady state error coefficients and error when applied input $r(t) = 40 + 2t + 5t^2$. (08 Marks)

OR

- K(s+13) using Routh's criterion, A unity feedback system control system has G(s) =calculate the range of K for which the system is (i) stable (ii) has its closed loop, poles more negative than -1.
 - b. What are the two special cases of Routh's array? How there can be handled and also explain (08 Marks) the concept of relative stability analysis?

Module-4


- (06 Marks) What are the general steps to solve the problems on root locus? Draw the approximate root locus diagram for a closed loop system, whose transfer function
 - is given by $G(s).H(s) = \frac{K}{s(s+5)(s+10)}$. Comment on stability. (10 Marks)

- OR
 Sketch the bodeplot for transfer function $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$, determine the value K
 - for the gain cross-over frequency 5 rad/sec. Briefly explain (i) Gain margin G.M. (ii) Phase margin P.M and also what should be the values of gain margin GM and phase margin P.M. (06 Marks)

- State the mapping theorem, explain any two cases. 9
 - Sketch the Nyquist plot for the system with G(s)H(s) =stability.

OR

Fig.Q10(a) shows PD controller used for the system, determine the value T_D so that the system will be critically damped. Calculate its settling time.

(08 Marks) Fig.Q10(a)

Explain the effect of PD and PI controllers on performance of second order system.

(08 Marks)