

15MT72

Seventh Semester B.E. Degree Examination, Aug./Sept.2020 Thermal Engineering

Time: 3 hrs.

Max. Marks: 80

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Use of thermodynamics and heat transfer data books are permitted.

Module-1

- Define: 1
 - (i) State postulate
 - Quasi-static process (ii)
 - (iii) Control volume
 - (iv) Adiabatic wall

(08 Marks)

b. Explain thermodynamic equilibrium in detail.

(08 Marks)

OR

Distinguish between heat and work. a.

Explain: (i) Shaft work

(ii) Electrical work

(06 Marks) (06 Marks)

c. Gas from a bottle of compressed helium is used to inflat an inelastic flexible balloon, originally folded completely flat to a volume of 0.5 m³. If barometer reads 760 mm Hg, what is the amount of work done upon the atmosphere by the balloon? Sketch the system before and after the process. (04 Marks)

Module-2

- 3 State the first law of thermodynamics for cyclic process. Show that internal energy is a property of a system with suitable diagram. (08 Marks)
 - Explain and illustrate conservation of energy principle to:
 - (i) Nozzle and diffuser
 - (ii) Turbine and compressors

(08 Marks)

- Explain the following: (i) Carnot principle (ii) Concept of heat engine. (06 Marks)
 - b. A reversible engine operates between temperatures T_1 and T ($T_1 > T$). The energy rejected from this engine is received by a second reversible engine at the same temperature T. The second engine rejects energy at temperature T_2 ($T_2 < T$). Show that:
 - Temperature T is the arithmetic mean of temperature T₁ and T₂ if the engine produces the same amount of work output.
 - Temperature T is the geometric mean of temperatures T_1 and T_2 if the engines have the same cycle efficiencies. (10 Marks)

Module-3

5 Distinguish among Otto, diesel and dual cycles.

(08 Marks)

- In an air standard diesel cycle, the compression ratio is 16, and at the beginning of isentropic compression, the temperature is 15°C and the pressure is 0.1 MPa. Heat is added until the temperature at the end of the constant pressure process is 1480°C. Calculate:
 - The cut-off ratio
 - The heat supplied per kg of air
 - (iii) The cycle efficiency

(08 Marks)

OR

6 a. Explain basic laws governing different modes of heat transfer.

(10 Marks)

b. Explain combined heat transfer mechanism in detail.

(06 Marks)

Module-4

a. Explain the concept of thermal contact resistance.

(06 Marks)

- b. Heat is transferred from hot fluid to cold fluid through a slab of thickness 4 cm with K=20~W/mK. The dimension of the surface perpendicular to the heat transfer is $0.5~m\times 2~m$. The hot fluid and cold fluid temperature are $150^{\circ}C$ and $40^{\circ}C$. The hot side and cold side connective coefficient are $300~W/m^2K$ and $500~W/m^2K$ respectively. Calculate:
 - (i) The rate of heat transfer
 - (ii) Overall heat transfer coefficient
 - (iii) The total thermal resistance

(10 Marks)

OR

- 8 a. Explain the physical significance of following non-dimensional number:
 - (i) Grasoff number
 - (ii) Nussett number
 - (iii) Prandtl number

(06 Marks)

b. Water is heated by a 15 cm by 15 cm vertical flat plate, which is maintained at 60°C. Calculate heat transfer rate when the water is at 20°C. (10 Marks)

Module-5

Using dimensional analysis, show that $N_u = cR_e^a P_r^b$ for forced convection with their usual notations. (16 Marks)

OR

- 10 a. Define the following terms used in radiation heat transfer:
 - (i) Absorptivity
- (ii) Black body
- (iii) White body

(iv) Gray body

- (v) Diffused reflection
- (vi) View factor

(06 Marks)

- b. Define:
 - (i) Kirchoff's law
 - (ii) Wein's displacement law

(06 Marks)

c. Two very large parallel plates are maintained at uniform temperatures $T_1 = 800 \text{ K}$ and $T_2 = 500 \text{ K}$ and have emissivities $\epsilon_1 = 0.2$ and $\epsilon_2 = 0.7$ respectively. Determine the net rate of radiation heat transfers between the two surfaces per unit surface area of the plates.

(04 Marks)

* * * * :