

CBCS SCHEME

18MEA21

Second Semester M.Tech. Degree Examination, Aug./Sept.2020
Finite Element Method

Time: 3 hrs.

ANGALOR

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain the steps involved in finite element method to solve engineering problems.
 - b. Derive the expression for displacement if a bar subjected to uniformly distributed load P0 per unit length as shown in Fig.Q1(b). Use Galerikin method.

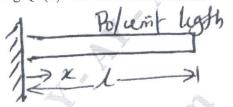


Fig.Q1(b)

(10 Marks)

. What are conforming and non-conforming elements?

(03 Marks)

OR

2 a. Derive the differential equation of equilibrium for a three dimensional body.

(07 Marks)

b. Determine the displacement at nodes for a system shown in Fig.Q2(b).

$$F_{1} = 60 \text{ N}$$

$$K_{2} = 60 \text{ N/m}$$

$$K_{2} = 60 \text{ N/m}$$

$$K_{3} = 80 \text{ N/m}$$

Fig.Q2(b)

(10 Marks)

Explain convergence criteria requirements. (03 Marks)

Module-2

3 a. Derive stress, strain and stiffness matrix for one dimensional for element.

(11 Marks)

b. What are Simplex Complex and Multiplex Elements?

(09 Marks)

OR

4 a. Derive the stiffness matrix for 2D truss element.

(10 Marks)

b. Derive Hermits shape functions for beam element.

(10 Marks)

Module-3

5 a. Derive the strain matrix for 3 noded CST (Constant Strain Triangle) Element.

(12 Marks)

b. Derive the shape function for eight noded quadrilateral element.

(08 Marks)

18MEA21

		1	8MEA21
		OR	
6	a.	Derive stiffness matrix for 4 noded quadrilateral element from isoperimetric repre	esentation. (12 Marks)
	b.	Write short notes on: (i) Serendipity elements (ii) Lagrange elements	(08 Marks)
		Module-4	
7	a. b.	Explain classical theory and deformation theory for thin plate. Explain the finite element formation for cylindrical elements.	(12 Marks) (08 Marks)
		OR	
8	a. b.	Explain finite element formulation for quadrilateral plate element. Write short notes on finite element formulation for conical and curved elements.	(10 Marks) (10 Marks)
	0.		
9	a.	Module-5 Derive the equation for mass matrix of a solid body with distributed mass.	(10 Marks)
	b.	What are the applications of Eigen values and Eigen vectors?	(10 Marks)
		OR	
10	a. b.	Derive the mass matrix equation for axi-symmetric triangular element. (i) Explain space frames.	(10 Marks) (05 Marks)
	٥,	(ii) Draw the mode shapes for cantilever beam.	(05 Marks)
		****	t di
			ž.
			i.
			, f
		2 of 2	
		2 01 2	
		X.	
			*