
                   International Journal of Modern Computer Science (IJMCS)                                                                                 ISSN: 2320-7868 (Online) 
                   Volume 2, Issue 6, December, 2014 
 

 

RES Publication © 2012           Page | 74  
http://ijmcs.info 

Development of an Online Static Power System Security 

Assessment Module Using Artificial Neural Networks in 118- 

Bus Test System 
 

Lekshmi M 
Research Scholar,  

Jain University, Bangalore 

 

Sowmya   
M.Tech Student (Power System), EEE, AIT 

 Bangalore 

Dr. M.S. Nagaraj 

HOD &Professor, Dept of EEE, 

Bappuji Institute of engineering & technology, Davengare, India 

 

Abstract: Contingency analysis is an important task in today’s power system. Fast and accurate contingency analysis is some of the major 

issues. In this paper two types of Artificial Neural Network (ANN) viz. Multilayer feed forward neural network (MLFFN) and Radial basis 

function network (RBFN) are used to implement online static security assessment. Newton Raphson (NR) method is done on an IEEE 118-test 

bus system and Composite Security Index (CSI) is calculated. Loads are varied from the base case values and for each load condition, line flow 

and bus voltages are calculated using a model based on the NR load flow method for training an ANN with the help of back propagation 

algorithm. Expected range of load variation and randomly selected 20-contingencies are tested in the training ANN model. The results obtained 

by the above ANN methods are matched with NR methods. The CSI is found out for various loads and contingencies in MLFFN and RBFN. The 

computation time required for MLFFN and RBFN is compared with NR method and found that RBFN is using less computation time average of 

35.67291s. 
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I. INTRODUCTION 

Security refers to the degree of risk in a power system’s 

ability to survive imminent disturbances (contingencies) 

without interruption to customer services. It relates to 

robustness of the system to imminent disturbances and, hence, 

depends on the system operating condition as well as the 

contingent probability of disturbances [1]. The power system 

security assessment can be divided into three major functions 

which are system monitoring, contingency analysis and 

security control. System monitoring provides up-to-date 

information such as voltage, currents, power flows and the 

status of the circuit breaker through the telemetry system. 

From this system monitoring, operator can easily identify the 

system in the normal state or in abnormal condition. On the 

other hand contingency analysis is carried out to evaluate the 

outage events in the power system and it is in a critical part in 

the security assessment [2]. During the insecure condition, 

security control will take the preventive actions to ensure the 

system is back to secure condition. Sunitha R et al. in 2011-13 

[10 &18] have proposed a single composite security index to 

indicate bus voltage and line flow limit violations which is 

calculated Newton Raphson load flow technique. The index is 

defined in such a way that it completely eliminates the 

masking problem, and provides a better definition of 

security.In which the secure state is indicated by an index 

value ―0‖, while a value greater than ―1‖indicates an insecure 

state. Index values lying between ―0‖ and ―1‖ indicate the 

alarm limit. It also avoids the difficult task of selecting the 

weights. This index works a projection of the multiple factors 

into a hyperbole region as a scalar value, considering both 

power flow and bus voltage violations, making it more robust. 

An overview is given in the following screen. 

The main objective of this paper is developing an online 

static security assessment (OSSA) module in order to 

overcome the large computational overhead of real time static 

security assessment procedure. The proposed module utilizes 

the composite security index (PIc) for the fast and accurate 

static security evaluation. The proposed OSAA module 

utilizes an ANN module that computes the composite security 

index for a particular loading and contingency condition. The 

training of the ANNs involves the development of composite 

security index for a wide range of loading conditions, for 

different contingencies. In this work a multi-layer feed 

forward network (MLFFN) and radial basis function network 

(RBFN) based OSSA modules are developed for IEEE 118-

bus test system. 

II. ONLINE STATIC SECURITY 

ASSESSMENT MODULE USING ANN 

In the proposed approach, power system security 

assessment against unplanned line outages are done by 

utilizing the high adaption capability of ANNs, as these are 

better suited to deal with nonlinear problems. Fig. 1 shows the 

structure of the proposed OSSA module. The real and reactive 

power generation at the generator buses (PG, QG), real and 

reactive power loads on all load buses (PD, QD), the voltage 

magnitudes  and phase angle δ for all buses are used for 

describing the system operating point and are chosen as the 

input for the security assessment module. This module is 



                   International Journal of Modern Computer Science (IJMCS)                                                                                 ISSN: 2320-7868 (Online) 
                   Volume 2, Issue 6, December, 2014 
 

 

RES Publication © 2012           Page | 75  
http://ijmcs.info 

capable of providing the security index for the given operating 

condition. 

The proposed OSSA module utilizes an ANN module for 

which the loading condition and contingency are the inputs 

and composite security index as the output. The contingencies 

are represented as a binary number in which ―0‖ represents the 

outage of the corresponding line. Two types of ANNs viz. 

MLFFN and RBFN are used to implement the proposed OSSA 

module, details of which are given in the following 

subsections. 

 
Fig 1. Structure of online static security assessment (OSSA) module 

A. Multilayer Feed Forward Network (MLFFN) 

In this work MLFFN has   two hidden layers which have  

nodes with nonlinear activation function . This is proposed for 

power system security assessment. Each node in one layer 

connects with a certain weight to every other node in the 

following layer. Real and reactive power demand at various 

load buses and binary numbers representing contingency are 

taken as the inputs to the MLFFN. The number of inputs 

mainly depends upon the topology of the system under 

consideration. The activation used in the hidden layers is the 

―hyperbolic tangent‖ and at the output layer, the linear 

function is used. The network is trained with ―Levenberg-

Marquardt‖ back propagation algorithm [11] due to its good 

convergence properties. In order to obtain the optimum 

number of neurons in the hidden layer, the number of neurons 

in the first hidden layer is varied from 3 to 10 and the second 

hidden layer from 10 to 20. For each change, in the number of 

hidden units, the ANN is trained and the mean square errors 

are compared. The number of neurons with minimum mean 

square error is selected for the final structure of MLFFN. 

B.   Radial Basis Function Network (RBFN) 

RBFN is a special class of feed forward neural network and 

consists of an input layer, a hidden layer and an output layer. 

The network is capable of performing nonlinear mapping of 

the input features into the output. The hidden layer consists of 

neurons with Gaussian activation functions, while the output 

layer neurons are with linear activation function. During 

training, all the input variables are fed to the neurons in the 

hidden layer directly through interconnections with unity 

weights and only the weights between hidden and output 

layers are to be trained. Thus, RBFN gives faster convergence 

than the conventional MLFFN. 

C.  Training and Testing pattern 

The purpose of the ANN technique for power system 

security assessment, related to the system’s stability, is 

described by the following procedure: The probable 

contingencies are listed out. In this work only the line outages 

are considered. The training data are generated by varying 

loads randomly between 50 and 150 percentage of their base 

case value. For each loading condition the pre and post-outage 

bus voltages and line flows are calculated with a full iteration 

of Newton Raphson (NR) load flow analysis. For each case, 

the composite security index is calculated using (5) by taking 

the value of ―n‖ as ―2‖. Nearly 90 training sets are generated 

from the test system under consideration. The trained module 

is tests for various random loading conditions, within the 

expected range of load variations. Various loading condition in 

terms of PG, QG, PD, QD, , δ and randomly selected 

contingencies are taken as the input for the trained ANN 

module. It can provide composite security index value for all 

contingencies identified as those with index value greater than 

one. The contingencies can also be ranked in the order of 

severity based on the composite security index PIc. 

III. COMPOSITE SECURITY INDEX 

In this paper the composite security index (CSI) defined in 

terms of both line flow and bus voltage limit violations. Two 

types of limits are defined for bus voltages and line loading, 

namely the security limit and the alarm limit. The security 

limit is the maximum limit specified for the bus voltages and 

the line flows. The alarm limit adjacent to the security limit, 

which gives an indication of closeness to the limit violations. 

It is also possible to treat the constraints on the bus voltage 

and the line flow as soft constraints, thereby the violation of 

these constraints, if not excessive, may be tolerated for a short 

period of time. 

It is assumed that the desirable voltages at each bus is 

known and is represented as Vi
d
. The upper and lower alarm 

limits and security limits of bus voltages are represented as Fi
u
, 

Fi
l
, Vi

u
 and Vi

l 
respectively. The normalized upper and lower 

voltage limit violations beyond the alarm limits are defined as 

in (1): 

             (1)                         

Where Vi is the voltage magnitude at bus i. For each upper 

and lower limit of bus voltages, the normalization factor  is 

defined in (2): 

                             (2) 
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According to (1) and (2), it can be observed that the ratio of 

(d/g) will give a value of ―0‖ if the value of the bus voltage is 

in between the upper and lower alarm limit. If the value of the 

bus voltage vector is above the upper alarm limit or below the 

lower alarm limit, it gives a value greater than ―0‖. Moreover, 

if the value bus voltage is above the upper security limit or 

below lower security limit, the value of (d/g) vector is in 

between ―0‖ and ―1‖, it is said to be in the alarm limit. Similar 

explanations holds good for power flows as well. 

For the line flows, the limit violation vectors dp and the 

normalization vector gp are defined in the similar manner. 

Since only the maximum limits are required to be specified for 

the power flow through each line, two types of upper limits are 

specified for each line: the alarm limit PF and the security limit 

PP. The normalized power flow limit violation vectors for each 

line j can be defined as in (3): 

                   (3) 

Where   is the absolute value of the power flow through 

the line j.The normalization factor for each line j is defined in 

(4): 

                                                      (4) 

For an N-bus, M-line system, there are (N + M) dimensional 

normalized limit violation vectors of both bus voltages and 

line flows. The concept of hyper-ellipse inscribed within the 

hyper-box is used for constructing the scalar valued composite 

security index (CSI) PIc from the vector valued limit violation 

vectors [10] and it is defined in (5) as 

            

  (5) 

Where ―n‖ is the exponent used in the hyper ellipse 

equation. The value of ―n‖ is chosen as ―2‖, because the 

approximation of hype-box for the hyper-ellipse has not 

improved beyond ―n‖=2 [10]. 

IV. TESTS AND RESULTS 

The proposed method has been tested with IEEE 118-Bus 

test system. The aim is to develop an online static security 

assessment module using the MLFFN and RBFN network 

architecture is discussed in the following subsection. 

IEEE 118-Bus test System 

The OSSA using MLFFN and RBFN are developed for 

IEEE 118-bus test system. The system consists of 54 

generators and 117 transmission lines and 9 transformers. The 

single line diagram of the system is as shown in Fig. 2. 

All line outages, except the lines which are the only line 

connected to a generator bus, are considered and simulated for 

system security evaluation. To calculate the composite security 

index, both alarm and security limits are to be chosen for each 

bus voltage. For PV buses the specified bus voltage is taken as 

the desired bus voltages and for PQ buses it is assumed to be 

―1 p.u‖. For line flows, 80% of the specified thermal limit is 

chosen as the alarm limit. 

 
Fig 2. Single line diagram of IEEE 118-bus test system 

To develop the proposed OSSA module for IEEE 118-bus 

system, the training sets are generated for the proposed ANN 

architectures by the composite security index for different 

contingencies considering random loading conditions within 

the stipulated load ranges. The training parameters used for 

both MLFFN and RBFN architectures, to get best converge 

characteristics. The performances of the trained MLFFN, 

RBFN and the performance of the proposed OSSA module are 

presented in the following subsections. 

1)        1) MLFFN Based OSSA: The structure of MLFFN 

developed for the proposed OSSA consists of the real and 

reactive power loads and the binary number which represents 

the contingency as the inputs and the corresponding composite 

security index as the output. The number of neurons in the 

hidden layers, chosen with minimum mean square error is 3 to 

10 respectively, for the respective hidden layers. Fig. 3 shows 

the variation of mean square error (MSE) with reference to the 

number of epochs obtained for training the MLFFN network. 

It is shown that the MSE obtained for IEEE 118-bus test 

system is 1.78738 × . 

2) RBFN Based OSSA: The RBFN is also trained using 

the same training set that is developed for MLFFN. In this 

case, the number of neurons in the hidden layer is equal to the 

number of training sets. For evaluating the performance, the 

composite security indices obtained with trained RBFN is 

compared with those computed using (5) based on NRLF 

analysis. 

Once the ANNs are trained, the composite security index 

values for different loading conditions with different 

contingencies obtained with proposed MLFFN and RBFN 

architecture are compared with that obtained using (5) which 

is based on Newton Raphson load flow (NRLF) analysis. For 

base load, light load conditions like 80% and 90% of base load 

and heavy load condition like 110% of the base load, 20 

contingencies are selected randomly and numbered as shown 

in Table I. 

For each case, the composite security indices obtained with 

trained MLFFN and RBFN network and that calculated using 
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(5) are plotted against the contingency number are as shown in 

the Figs 3 to 10. It is observed that the trained RBFN is 

capable of computing the index values as accurate when  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compared to the MLFFN as that by NRLF analysis. The 

computation time required for NR, MLFFN and RBFN for 

different loading condition is as shown in Table II. 

In Fig. 3-8 the (d/g) ratio is playing a crucial role in 

developing a higher composite security index and hence 

contingency at a particular bus number. This means that the 

bus where there is a spike in contingency situation shall be 

given attention. This is happening in all types of load 

conditions. This ratio is consistently high at contingency 

number 10-14.  

The alarm limit for specific bus number could be matched 

with specified voltage thereby reducing the value ratio d/g. 

This might help to indicate a mechanism of less contingent bus 

number in case of variation of load. Ofcourse it should not 

affect the CSI of the other contingency number.  

Among NR, MLFFN AND RBFN networks, the ANN 

algorithm used in RBFN gives the output with less time 

compared to other two. This signifies a superiority of the 

Radial Basis Function Network (RBFN). 
Table I 

   Randomly Selected Contingencies for Testing The Mlffn And Rbfn For 

Different Loading Conditions  

Contin

gency 

Number 

Base 

load 

80% of 

base load 

90% 

of base 

load 

110% 

of base 

load 1 54-55 89-92 77-80 49-66 

2 104-

105 

49-66 101-

102 

100-

104 3 69-3 75-77 1-3 25-27 

4 40-41 17-31 15-19 68-

116 5 4-11 49-51 80-99 38-37 

6 82-83 93-94 50-57 35-37 

7 77-78 81-80 103-

105 

100-

103 8 68-

116 

56-59 88-89 89-90 

9 66-67 49-69 77-82 15-19 

10 49-54 80-96 47-49 4-5 

11 8-30 11-12 23-25 100-

106 12 74-75 71-73 22-23 26-30 

13 88-89 4-11 30-17 40-41 

14 49-50 54-56 55-56 77-80 

15 48-49 40-42 100-

101 

37-40 

16 55-56 100-103 61-62 59-60 

17 89-92 4-5 80-98 2-12 

18 80-96 91-92 56-59 12-

112 19 106-

107 

27-115 48-49 24-70 

20 98-

100 

75-118 54-59 55-56 

 

SIMULATION RESULTS 
1. Base load condition 

 
Fig 3. Composite security indices for MLFFN and NR (base load) 

 
Fig 4. Composite security index for RBFN and NR (base load) 

2. 80% of base load condition 

Continge

ncies 

Composite 

Security Index 

Using NR 

Composite 

Security Index 

Using MLFFN 

Composite 

Security Index 

Using RBFN 

89-92 0.722018 0.733568 0.722018 

49-66 0.970269 0.649853 0.970269 

75-77 0.683757 0.693446 0.683757 

17-31 0.607762 0.649853 0.607762 

49-51 1.08375 1.048001 1.08375 

93-94 0.979495 0.879439 0.979495 

81-80 0.991451 0.649853 0.991451 

56-59 1.105715 1.106771 1.105715 

49-69 0.685869 0.688877 0.685869 

80-96 0.995688 1.059431 0.995688 

11-12 1.095611 1.093583 1.095611 

71-73 0 0.649853 0 

4-11 5.789486 6.05932 5.789486 

54-56 1.914565 1.900708 1.914565 

40-42 0.434738 0.649853 0.434738 

100-103 0.590697 0.592107 0.590697 

4-5 1.74633 1.743933 1.74633 

91-92 0.90385 0.895149 0.90385 

27-115 0.985954 0.971602 0.985954 

75-118 6.589455 6.28447 6.589455 

 

Continge

ncies 

Composi

te Security 

Index Using 

NR 

Compos

ite Security 

Index Using 

MLFFN 

Compos

ite Security 

Index Using 

RBFN 54-55 0.316829 0.31682

9 

0.31682

9 104-105 0.338557 0.33855

7 

0.33855

7 69-3 0.280161 0.28016

1 

0.28016

1 40-41 0.255192 0.25519

2 

0.25519

2 4-11 0.749008 0.74900

8 

0.74900

8 82-83 0.310203 0.31020

3 

0.31020

3 77-78 1.237381 1.23738

1 

1.23738

1 68-116 0 0 0 

66-67 1.238325 1.23832

5 

1.23832

5 49-54 0.36294 0.36294 0.36294 

8-30 0.412901 0.41290

1 

0.41290

1 74-75 3.527503 3.52750

3 

3.52750

3 88-89 0.656026 0.65602

6 

0.65602

6 49-50 0.361829 0.36182

9 

0.36182

9 48-49 0.339538 0.33953

8 

0.33953

8 55-56 0.329791 0.32979

1 

0.32979

1 89-92 0.341313 0.34131

3 

0.34131

3 80-96 0.245825 0.24582

5 

0.24582

5 106-107 0.241387 0.24138

7 

0.24138

7 98-100 0.511457 0.51145

7 

0.51145

7 
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Fig 5. Composite security indices for MLFFN and NR (80% of base load) 

 
Fig 6. Composite security index for RBFN and NR (80% of the base load) 

3. 90% of the base load condition 

Continge

ncies 

Composit

e Security 

Index Using 

NR 

Composite 

Security Index 

Using MLFFN 

Composite 

Security Index 

Using RBFN 

77-80 1.321545 1.321683 1.321545 

101-102 0.422049 0.422039 0.422049 

1-3 0.442453 0.442543 0.442453 

15-19 0.319954 0.319971 0.319954 

80-99 0.396701 0.396707 0.396701 

50-57 0.409115 0.409102 0.409115 

103-105 0.399874 0.399855 0.399874 

88-89 3.360424 3.360433 3.360424 

77-82 0.377177 0.377189 0.377177 

47-49 0.317792 0.317518 0.317792 

23-25 2.222307 2.222303 2.222307 

22-23 1.670785 0.439543 1.670785 

30-17 1.031272 1.031276 1.031272 

55-56 0.440335 0.440426 0.440335 

100-101 0.352423 0.352425 0.352423 

61-62 0.288712 0.288758 0.288712 

80-98 0.4996 0.499596 0.4996 

56-59 0.399466 0.399272 0.399466 

48-49 0.410456 0.410455 0.410456 

54-59 0.377624 0.377593 0.377624 

 

 
Fig 7. Composite security indices for MLFFN and NR (90% of base load) 

 
Fig 8. Composite security index for RBFN and NR (90% of the base load) 

4. 110% of the base load condition 

Continge

ncies 

Composite 

Security Index 

Using NR 

Composite 

Security Index 

Using MLFFN 

Composite 

Security Index 

Using RBFN 

49-66 0.484892 0.484892 0.484892 

100-104 4.501788 4.501788 4.501788 

25-27 4.319959 4.319959 4.319959 

68-116 0 0 0 

38-37 6.398665 6.398665 6.398665 

35-37 0.279376 0.279377 0.279376 

100-103 3.283608 3.283608 3.283608 

89-90 0.424165 0.424165 0.424165 

15-19 0.328915 0.328914 0.328915 

4-5 0.480289 0.480288 0.480289 

100-106 0.411443 0.411444 0.411443 

26-30 0.447263 0.447263 0.447263 

40-41 1.159949 1.159949 1.159949 

77-80 0.307782 0.307782 0.307782 

37-40 0.275972 0.275972 0.275972 

59-60 5.841 5.841 5.841 

2-12 0.253189 0.25319 0.253189 

12-112 0 0 0 

24-70 0.299889 0.299889 0.299889 

55-56 3.800609 3.800609 3.800609 

 
Fig 9. Composite security indices for MLFFN and NR (110% of base 

load) 

 
Fig 10. Composite security index for RBFN and NR (110% of the base 

load) 
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TABLE II 

COMPUTATION TIME REQUIRED FOR NR, MLFFN AND RBFN FOR 

DIFRRENT LOADING CONDITIONS 

 Base 

load 

80% of 

base load 

90% of 

base load 

110% of 

base load 

NR 
74.012

428 s 

72.42567 

s 

68.12593

4 s 

76.890492 

s 

ML

FFN 

50.817

632 s 

46.21292

8 s 

29.89005

8 s 

44.361361 

s 

RB

FN 

35.772

090 s 

36.54662

2 s 

32.05847

1 s 

35.188185 

s 

 

V. CONCLUSION 

The effectiveness of the proposed OSSA module is 

demonstrated on IEEE 118-bus test system in terms of 

accuracy of computation and reduction in computation time 

required for static security assessment. Two types of ANN are 

used viz. MLFFN and RBFN. Average computation time 

required for four different loading conditions using MLFFN, 

RBFN and NR methods are 42.82049s, 35.67291s and 

72.86363s respectively. Proposed OSSA based on RBFN 

architecture is capable of accurately assessing the security of 

the system against outages significantly faster than the 

conventional techniques. 
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