

CBCS SCHEME

17AE/AS42

Fourth Semester B.E. Degree Examination, Jan./Feb. 2021 Aerodynamics – I

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Develop continuity equation for any finite control volume fixed in space. (08 Marks)
 - b. Explain the following aerodynamic flows:
 - i) Inviscid Vs Viscous flow
 - ii) Laminar Vs Turbulent flow
 - iii) Steady Vs Unsteady flow
 - iv) Rotational Vs Irrotational flow

(12 Marks)

OR

- 2 a. Explain Mach Number regimes.
 - o. Derive the relationship between the following:
 - i) Stream function and velocity potential function
 - ii) Circulation and Verticity.

(10 Marks)

(10 Marks)

Module-2

- a. Name the classifications of NACA airfoils and write down the explanation of the digits in each if the following:
 - i) NACA 2414
 - ii) NACA 23014
 - iii) NACA 65-214

(10 Marks)

- b. Consider an airfoil in a flow with a free stream velocity of 45.72m/s. The velocity at a given point on the airfoil is 68.58m/s. Calculate the pressure co-efficient at this point. (04 Marks)
- c. Derive an expression for the pressure co-efficient for incompressible flow using Bernoulli's equation. (06 Marks)

OR

- 4 a. Define Aerodynamics center. Derive an expression for the location of the aerodynamics center. (10 Marks)
 - b. Consider the NACA 23012 airfoil. It shows that, at $\alpha=4^\circ$, $C_{\ell}=0.55$ and $C_{m,C/4}=-0.005$. The zero lift angle of attack is -1.1° . Also at $\alpha=-4^\circ$, $C_{m\,C/4}=-0.0125$. From the given information, calculate the location of the aerodynamic center. (06 Marks)
 - e. Explain the airfoil aerodynamic characteristics.

(04 Marks)

Module-3

- 5 a. Consider non-lifting flow over a circular cylinder and derive the expression $C_p = 1 4 \sin^2 \theta$ and also show the C_p variation over the surface of the cylinder graphically. (12 Marks)
 - b. Consider the lifting flow over a circular cylinder with a diameter of 0.5m. The free stream velocity is 25 m/s, and the maximum velocity on the surface of the cylinder is 75m/s. The free stream conditions are those for a standard altitude of 3km. Calculate the lift per unit span on the cylinder. Assume at altitude 3 km, $\rho = 0.90926 \text{ kg/m}^3$. (08 Marks)

OR

- 6 a. Prove that the center of pressure is at the quarter chord point for a symmetric airfoil.

 (10 Marks)
 - b. Consider a thin flat plate at 5 deg. angle of attack. Calculate the
 - i) lift co -efficient
 - ii) moment co-efficient about the leading edge
 - iii) moment co-efficient about the quarter chord point and
 - iv) moment co-efficient about the trailing edge.

(10 Marks)

Module-4

- 7 a. Derive the expression for the induced angle of attack and induced drag co-efficient using elliptical lift distribution. (12 Marks)
 - b. Consider a rectangular wing with an aspect ratio of 6, an induced drag factor $\delta = 0.055$, and a zero-lift angle of attack of -2°. At an angle of attack of 3.4°, the induced drag co-efficient for this wing is 0.01. Calculate the induced drag co-efficient for a similar wing (a rectangular wing with the same airfoil section) at the same angle of attack, but with an aspect ratio of 10.Assume $\delta = \tau$. Also, for AR =10, $\delta = 0.105$. (08 Marks)

OR

- 8 a. Obtain the expression for the velocity induced by infinite and Semi-infinite vortex filament using Biot Savart law. (10 Marks)
 - b. Briefly explain Prandtl's Classical Lifting Line theory and its Limitations. (10 Marks)

Module-5

- 9 Write short notes on the following:
 - a) Formation of Flight
 - b) Influence of downwash on fail plane
 - c) Ground effect
 - d) Simplified Horseshoe Vortex.

(20 Marks)

OR

- a. Briefly explain Critical Mach Number and Drag divergence Mach Number.
 b. Write short notes on Subsonic and Supersonic Leading edges.
 (06 Marks)
 - c. Explain Transonic area rule.

(06 Marks)

* * * * *