

CBCS SCHEME

15AE42

Fourth Semester B.E. Degree Examination, Jan./Feb. 2021 Aerodynamics - I

	1 11	ne: .	3 hrs. Max. Ma	Max. Marks: 80									
ice.	Note: Answer any FIVE full questions, choosing ONE full question from each module.												
practi		Module-1											
malj	1	a.	Derive the Integral form of momentum equation by Control Volume Approach.	(10 Marks)									
On completing your answers, compulsoring may diagonal cross inter-on the formalining plant pages. Any revealing of identification, appeal to evaluator and /or equations written eg, $42+8=50$, will be treated as malpractice.		b.	Define i) Circulation ii) Mach cone iii) Mach angle.	(06 Marks)									
treat			OR										
On compremity your answers, compusoring may unagonal cross miles on the formalining plank pages. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be	2	a.	Explain the following: i) Path lines ii) Stream lines iii) Streak lines.	(06 Marks)									
wil wil		b.	Define and explain Compressibility.	(06 Marks)									
= 50		c.	Obtain the relation between stream function and velocity potential function	stating its									
8+. +8+.			Inference.	(04 Marks)									
3, 42													
en eg	3	a.	Module-2 With a neat sketch, explain in detail the Airfoil Nomenclature.	(00.75)									
on u vritt	5	b.	With a neat sketch, explain the wing plan form geometry.	(08 Marks) (08 Marks)									
nes v			and the ming plan form geometry.	(UO IVIAI KS)									
uatic			OR										
r eq	4	a.	What is Center of pressure and explain the pressure distribution over an airfoil	at various									
o/ pu		1	degrees of angle of attack, with neat sketches.	(10 Marks)									
or ar		b.	Explain the types of drag.	(06 Marks)									
Juat			Module-3										
eva	5	a.	Write short notes on the following:										
al to			i) Kutta condition ii) Kelvin's Circulation Theorem.	(08 Marks)									
арре		b.	What is D'Alembert's Paradox?	(04 Marks)									
on,		C.	State Kutta – Joukowski Theorem.	(04 Marks)									
icati			OP										
n and	6	a. /	Obtain an expression for the following for a lifting flow over cylinder:										
you of id		4	i) Stream function ii) Location of stagnation points iii) Pressure coef	ficients									
ing (Also explain with a neat sketch, the location of stagnation points for different values of											
veal		1		(12 Marks)									
y re		b.	Define Doublet flow.	(04 Marks)									
. A.			Module-4										
. 2.	7	a.	Write short notes on the following:										
1001			i) Biot – Savart law ii) Helmholtz's Theorem.	(08 Marks)									
Lam		b.	Using Biot – Savart law compute the Induced velocity at a point in the field.	(08 Marks)									
5													

OR

1	5	A	I	1	4	2

8	a. b.	What are limitations of Prandtl's lifting theory. Derive the Prandtl's classical lifting line theory.	(06 Marks) (10 Marks)
9	a. b. c.	Module-5 Explain the Horst – shoe Vortex system over a lifting wing. Explain in detail about Subsonic and Supersonic leading edges. Explain in detail about High – lift systems.	(06 Marks) (04 Marks) (06 Marks)
10	a. b. c.	OR Explain in detail about Lift and Drag divergence. Explain briefly about the Transonic – Area rule. What are Critical Mach Number and Tip effects?	(06 Marks) (04 Marks) (06 Marks)
		* * * *	
		2.52	
		2 of 2	