

CBCS SCHEME

15AE63

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Aircraft Performance

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Consider an airplane at steady, level and unaccelerated flight for an above said condition, show that $\left[\frac{L}{D}\right]_{max} = \frac{1}{\sqrt{4CD_oK}}$. (16 Marks)

OR

2 Discuss the effect of altitude on Thrust required and power required curves. (16 Marks)

Module-2

3 Represent the forces on the airplane in steady climb and derive the expression for rate of climb in terms of T/W, W/s and density and explain the climb performance of an airplane with aid of hodograph diagram. (16 Marks)

OR

4 a. Briefly explain the following terms with relevant graph:

i) Absolute ceiling ii) Service ceiling.

(08 Marks)

b. Define Gliding flight and Derive an expression for minimum glide angle.

(08 Marks)

Module-3

5 Derive the Range and Endurance equation for Jet Engine Aircraft.

(16 Marks)

OR

6 Derive the Range and Endurance equation for Piston Engine Aircraft.

(16 Marks)

Module-4

7 Explain briefly about the various phases of Take – off of an Airplane with neat sketch. (16 Marks)

OR

8 Derive an expression for ground roll distance during Take – off and landing.

(16 Marks)

Module-5

Draw a V – n diagram for a typical Jet trainer Aircraft and briefly explain the salient parameters.

(16 Marks)

OR

With a neat sketch, explain the pull - up, pull - down and level turn maneuvers and derive an expression of minimum Turn radius and maximum Turn rate. (16 Marks)

* * * * *