

15AE651

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Finite Element Method

Time: 3 hrs.

BANGN

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Discuss various applications of FEA in different domains.

(04 Marks)

b. Briefly explain the convergence requirements of a displacement model.

(04 Marks)

c. Consider the two element system depicted in Fig.Q.1(c), given that node 1 is attached to a fixed support, yielding the displacement constraint, $u_1 = 0$, $k_1 = 5N/m$, $k_2 = 75N/m$, $F_2 = F_3 = 75N$. For these forces, find the nodal displacements u_2 and u_3 . (08 Marks)

Fig.Q.1(c)
$$F_1$$
 1 2 F_2 3 F_3

a. A cantilever beam of span 'L' is subjected to a point load at free end. Derive an equation for deflection at free end using R-R method. Assume polynomial displacement function.

(10 Marks)

b. Explain simplex, complex and multiplex elements with example each.

(06 Marks)

Module-2

a. Derive element stiffness matrix for 1D bar element.

(06 Marks)

b. Determine displacement, stresses and support reactions for a thin plate of uniform thickness of 25mm as shown in Fig.Q.3(b), subjected to a point load of 1kN at its centre. Take value $E = 2 \times 10^5 \text{N/mm}^2$, weight density of the plate = $76.6 \times 10^{-6} \text{N/mm}^3$. (10 Marks)

For the 1

a. For the beam element shown in Fig.Q.4(a), find the deflection under given load. Take $E = 2 \times 10^8 \text{ kN/m}^2$ and $I = 4 \times 10^{-6} \text{m}^4$. (10 Marks)

b. Write Hermite shape function equation and plot the variation of same (only equation and sketch). (06 Marks)

Module-3

- Derive shape function of a CST element in natural coordinate system. 5 (08 Marks)
 - Derive stiffness matrix for 4-noded tetrahedral element. (08 Marks)

OR

- Explain with a neat sketch, serendipity and Lagrange family. (08 Marks) (08 Marks)
 - Derive shape function for eight-noded hexahedral element.

Module-4

- With a neat sketch, explain ISO, sub and super parametric elements. (06 Marks)
 - Explain the characteristics of Isoparametric quadrilateral elements. (10 Marks)

- Explain the structure of computer program for FEM analysis. 8 (08 Marks)
 - Explain briefly the axisymmetric formulation finite element modeling of triangular element. (08 Marks)

Module-5

- Deduce the governing differential equation for one-dimensional heat conduction. (06 Marks)
 - Find the distribution in the 1D fin shown in Fig.Q.9(b). Take two element for FE idealization. (10 Marks)

Explain formulation of Hamilton's principle.

- (06 Marks)
- b. Determine the temperature distribution through the composite wall subjected to convention heat loss on right side surface with convective heat transfer coefficient as shown in Fig.Q.10(b). take ambient temperature as -5°C. (10 Marks)

Fig.Q.10(b)