

10AE63

Sixth Semester B.E. Degree Examination, Jan./Feb. 2021 Aerodynamics – II

Time: 3 hrs. Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- a. Explain with a neat sketch, source panel distribution over the surface of a body of arbitrary shape and their expression for normal and tangential induced velocity mention the expression for pressure co-efficient at the ith control point. (10 Marks)
 - b. Consider lifting flow over an arbitrary body and device an expression for total surface velocity induced at the ith control point employing vertex point method, mention the total circulation and lift for unit open.
- 2 a. Derive the expression for the induced AOA and induced drag coefficient using elliptical lift distribution. (10 Marks)
 - b. Derive an expression for lift coefficient and induced drag coefficient in terms of circulation strength $\Gamma(y)$ for a finite wing using through general lift distribution. (10 Marks)
- a. Explain the assumptions made in linerized velocity potential equation and derive an expression for pressure co-efficient for an inviscid, compressible, irrotational subsonic flow using linerazied velocity potential equation. (12 Marks)
 - b. The theoretical lift co-efficient for a, thin, symmetric airfoil in a incompressible flow is $C_L = 2\pi\alpha$. Calculate the lift co-efficient for $M_\infty = 0.7$. (04 Marks)
 - c. For given airfoil, the critical mach number is 0.8. Calculate the value of $\frac{p}{p_{\infty}}$ at the minimum

pressure point when $M_{\infty} = 0.8$.

(04 Marks)

(06 Marks)

- 4 a. In low speed incompressible flow, the pressure co-efficient (at the minimum pressure point of an airfoil is -0.41.) Estimate the critical Mach number for thin airfoil, using the Prandtl-Glavert rule (using graphical method). (08 Marks)
 - b. What is critical Mach number and derive the relation for critical pressure co-efficient in terms of free stream Mach number. (06 Marks)
 - c. Describe the effects of airfoil thickness on critical Mach number.

PART - B

- 5 Write short notes on the following:
 - a. Simplified horse shoe vortex model.
 - b. Formation of flight.
 - c. Influence of downwash on tail place.
 - d. Ground effects.

(20 Marks)

- 6 a. What are the different types of small perturbation flow? Briefly explain with relevant sketches. (10 Marks)
 - b. Describe the subsonic flows past an axial body of revolution with relevant sketches.

(10 Marks)

- 7 a. What are high lift devices? List them and explain their effects on aerodynamic characteristics. (10 Marks)
 - b. Describe the advantages of script wings in modern airplanes.

(10 Marks)

- 8 a. Define total drag with reference to pressure and skin friction drag. (02 Marks)
 - b. Explain with a neat sketch, the boundary layer flow transition over a flat plate. (08 Marks)
 - c. For the velocity profile for laminar boundary layer $\frac{u}{U} = \frac{3}{2} \left(\frac{y}{\delta} \right) \frac{1}{2} \left(\frac{y}{\delta} \right)^2$. Determine the boundary layer thickness, shear stress, drag force and co-efficient of drag interms of Reynolds number. (10 Marks)

2 of 2