


CBCS SCHEME

15AE72

Seventh Semester B.E. Degree Examination, Jan./Feb.2021 Computational Fluid Dynamics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. What is the philosophy of CFD and what are some of its applications? (08 Marks)
 - b. Highlight different models of flow. Explain substantial derivative and physical meaning of divergence of velocity. (08 Marks)

OR

- 2 a. Explain the following terms:
 - (i) Dirichlet and Nuemann Boundary conditions.
 - (ii) Shock-capturing and shock filling methods.
 - (iii) Viscous flow and inviscid flow. (09 Marks)
 - b. Describe general comments on partial differential equation and write no-slip boundary condition. (07 Marks)

Module-2

- 3 a. How does a quasi-linear partial differential equation get classified? Explain it using Cramer's rule.
 - b. Explain the impact of classification of PDE on physical and computational fluid dynamics.
 (06 Marks)

OR

- 4 a. Compare and contrast the general behaviors of partial differential equations with suitable examples and neat diagrams. (10 Marks)
 - b. Identify the type of partial differential equations,

(i)
$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0.$$

- (ii) $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$, where α is a constant.
- (iii) $\frac{\partial^2 u}{\partial t^2} + C^2 \frac{\partial^2 u}{\partial x^2} = 0$, where C is a constant. (06 Marks)

Module-3

- 5 a. Explain the features of the following:
 - (i) Structured grids.
 - (ii) Unstructured grids.

(10 Marks)

b. Elaborate on algebraic grid generation.

(06 Marks)

OR

What are adaptive grids? Describe two types of grid adaptive methods.

(16 Marks)

Module-4

7 a. Approximate the continuity equation, $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$, using finite difference method.

(04 Marks)

- b. Elaborate on following terms:
 - (i) Errors and stability analysis.
 - (ii) Lax-Wendroff method.

(iii) Time and Space Marching.

(12 Marks)

OR

- 8 a. Explain the reason and the way of transformation from a physical plane to a computational plane with neat sketches.

 (06 Marks)
 - Elaborate Matrics and Jacobian determinant and show the application of metrics in Laplace equation, $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial x^2} = 0$. (10 Marks)

Module-5

- 9 a. With neat sketches, elucidate vertex-centered and dual cell control volume schemes and their underlying concepts. (09 Marks)
 - b. Explain temporal discritisation using explicit and implicit time stepping methods. (07 Marks)

OF

- 10 a. Construct a finite volume discritisation scheme on one dimensional steady heat conduction equation. $K\left(\frac{d^2T}{dx^2}\right) + S = 0$, where K is thermal conductivity of the material. T is the
 - temperature and S is a source of head.
 b. Show the fundamental difference between FDM and FVM through diagrams for a 1-D 2nd order partial differential equation.
 (06 Marks)

* * * * *