

GBCS SCHEME

Fourth Semester B.E. Degree Examination, Jan./Feb. 2021

Time: 3 hrs.

Max. Marks: 100

18BT41

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Stoichiometry

Module-1

- a. An aqueous solution of K₂CO₃ is prepared by dissolving 43 kg of K₂CO₃ in 100kg of water at 293 K (20°C). Calculate the molarity, normality and molality in solution. (10 Marks)
 - b. Nitric acid and water forms maximum boiling azeotrope containing 62.2% water by mole. Find the composition of azeotrope in weight%. (10 Marks)

OR

- 2 a. A mixture of CH₄ and C₂H₆ has density of 1.0 kg/m³ at 273 K and 101.325 kPa. Calculate the mole% and weight% of CH₄ and C₂H₆ in the mixture. (10 Marks)
 - b. Define the following:
 - i) Dalton law
- ii) Amagat's law
- iii) Ideal gas law

- iv) Normality
- v) Molality.

(10 Marks)

Module-2

- a. A feed to a continuous fractionating column analysis by weight has 28% benzene and 72% toluene. The analysis of the distillate shows 52 weight% of benzene and 5 weight% of benzene in the bottom product. Calculate the amount of distillate and product per 1000 kg of feed per hour. Also calculate the percent recovery of benzene.

 (10 Marks)
 - b. Crude oil is analyzed to contain 87% Carbon, 12.5% hydrogen and 0.5% Sulphur by weight. Calculate the net calorific value of crude oil at 298 K.
 Data: Gross calorific value of crude oil at 298 K is 45071 kJ/kg oil. Latent heat of water vapour at 298 K is 2442.5 kJ/kg.

OR

- 4 a. Dryer system handles 1000 kg/day of wet solids. Wet solids containing 50% solids and 50% water are fed to the first dryer. From the first dryer the product that comes out has 20% moisture. This is admitted to the second dryer from which the product coming out has 2% moisture. Calculate the % of original coats that is removed in each dryer and final weight of the product.
 - b. Soyabean seeds are extracted with hexane in batch extractor. The flaked seeds are found to contain 18.6% oil, 69% solid and 12.4% moisture by weight. At the end of the extraction process cake (meal) is separated from hexane-oil mixture. The cake is analyzed to contain 0.8% oil, 87.7% solids and 11.5% moisture by weight. Find the percentage recovery of oil.

 (10 Marks)

Module-3

5 a. In the production of Sulphurtrioxide 100 kmol of SO₂ and 100 kmol of O₂ are fed to a reactor. If the percent conversion of SO₂ is 80, calculate the composition of the product stream on mole basis.

(10 Marks)

- b. A coke is known to contain 90% carbon and 10% non combustible ash (by weight).
 - i) How many moles of Oxygen are theoretically required to burn 100kg of coke completely?
 - ii) If 50% excess air is supplied, calculate the analysis.

(10 Marks)

OR

6 a. A combustion chamber is fed with butane and excess air. Combustion of butane is complete. The composition of combustion of gases on volume basis is given below.

 $CO_2 = 9.39\%$, $H_2O = 11.73\%$, $O_2 = 4.70\%$, $N_2 = 74.18\%$. Find % excess air used and mole ratio of air to butane used. (10 Marks)

- b. Define the following:
 - (i) Limiting reactant
 - (ii) Yield
 - (iii) Selectivity
 - (iv) Percent excess
 - (v) Stochiometric ratio.

(10 Marks)

Module-4

7 a. A stream flowing at a rate of 1500 mol/h containing 25 mole% N₂ and 75 mole% H₂ is to be heated from 298 K (25°C) to 473 K (200°C). Calculate the heat that must be transferred using C_p, data given below.

$$C_{p^{\circ}} = a + bT + cT^2 + dT^3 kJ/KmolK$$

(10 Marks)

Gas	a	$b \times 10^3$	c×10 ⁶	d×109
N_2	29.5909	-5.41	13.1829	-4.968
H_2	28.6105	1.0194	0.1476	0.769

b. A stream containing 10% CH₄ and 90% air by volume is to be heated from 373 K to 573 K at a rate of 0.05 m³ NTP per second. Calculate the heat required to be added using mean molal heat capacity in KJ/KmolK.

Gas	C _{p°} m (373 – 298 K)	C _{P°} m (573 – 298 K)
CH ₄	37.5974	43.0821
Air	29.2908	29.6132

(10 Marks)

OR

- 8 a. Calculate the heat of formation of n-propanol liquid using the following data:
 - Standard heat of formation of $CO_2(g) = -393.51$ KJ/mol.

Standard heat of formation of $H_2O(\ell) = -285.83$ KJ/mol

Standard heat of combustion of n-propanol = -2028.19 KJ/mol

(10 Marks)

b. Obtain an empirical equation for calculating the heat of reaction at any temperature (T) in K for the reaction, $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$

Data : $\Delta H_R^{\circ} = -90.41 \text{ KJ/mol}$

$$C_{p^{\circ}} = a + bT + cT^2 + dT^3 (kJ/KmolK) \text{ or } (J/molK)$$

Component	a	$b \times 10^3$	c×10 ⁶	d×10 ⁹
CO(g)	29.0277	-2.8165	11.6437	-4.7063
$H_2(g)$	28.6105	1.0194	-0.1476	0.769
CH ₃ OH(g)	21.137	70.843	25.86	-28.49

(10 Marks)

Module-5

- 9 a. Explain in detail the unit operations involved in bioprocess technology with a neat flow chart. (10 Marks)
 - b. With a process flow sheet explain the process of manufacturing of ethanol with specific to the various unit operations involved in it. (10 Marks)

OR

- 10 a. Define the following:
 - (i) Maintenance coefficient
 - (ii) Yield coefficient
 - (iii) Specific growth rate
 - (iv) Proton oxygen ratio.

(08 Marks)

- b. Write short notes on the following:
 - (i) Historical developments in bioprocess technology.
 - (ii) Traditional and modern applications of biotechnology.

(12 Marks)

* * * * *