CBCS SCHEME

18BT52

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Chemical Reaction Engineering

Time: 3 hrs.

The state of the s

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Derive an Integrated rate equation for bimolecular irreversible second order reaction.

(10 Marks)

- b. Define the following:
 - (i) Order and molecularity.
 - (ii) Law of mass action.
 - (iii) Elementary and non elementary reaction.

(10 Marks)

OR

2 a. Derive temperature dependency term from transition state theory and Arrhenius law.

(12 Marks)

b. At 500 K, the rate of a bimolecular reaction is ten times the rate at 400 K. Find the activation energy for this reaction, using (i) Arrhenius law (ii) From collision theory. (08 Marks)

Module-2

- 3 a. Derive design equations for steady state plug flow reactor with graphical representation for general case and constant density system. (12 Marks)
 - b. In an Isothermal Batch reactor, the conversion of liquid reactant is 70% in 13 minutes. Find space time and space velocity necessary to affect this conversion in a MFR and PFR.

(08 Marks)

OR

4 a. Derive the performance equation for batch reactor.

(12 Marks)

b. Define space time and space velocity.

(04 Marks)

c. A homogenous gas phase reaction $A \rightarrow 3R$, proceeds with $-r_A = 10^{-2} \, e_A^{0.5}$. Determine τ required for MFR to attain 80% conversion. (04 Marks)

Module-3

- 5 a. Derive expressions for batch reactor and plug flow reactor with respect to conversion of first order reaction. (10 Marks)
 - b. Derive an expression for RTD in CSTR.

(10 Marks)

OR

- 6 a. Write short notes on the following:
 - (i) Characteristic features of tracer.
 - (ii) State of aggregation.

(08 Marks)

- b. Derive an equation for RTD and exit age distribution for measuring. Residence time
- distribution from pulse input experiment.

(12 Marks)

Module-4

7 a. Derive equation for Micheli's Menton kinetics and add a note on significance of K_m.

(12 Marks)

b. What is the ratio of substrate concentration for a reaction proceeding at 90% and 10% of V_{max} respectively. (08 Marks)

OR

- 8 a. Explain in detail about the types of enzyme specificities. (10 Marks)
 - b. Derive equations for, (i) Double reciprocal plot and (ii) Single reciprocal plot (10 Marks)

Module-5

9 a. Explain substrate and product inhibition on cell growth and product formation.
b. Describe in detail the thermal death kinetics of microorganisms. (10 Marks)

OR

- 10 a. Discuss about the monod model and Leudeking piret model of growth rate of microorganisms. (10 Marks)
 - b. Write short notes on Carbon and nitrogen source required for media preparation. (10 Marks)

,