

| . [      | 1 - 5 |  |  |  |
|----------|-------|--|--|--|
| USN      | 41.4  |  |  |  |
| ATT TO L |       |  |  |  |

i) Reset circuit

c. Explain how program memory are classified.

18CS44

(06 Marks)

(06 Marks)

# Fourth Semester B.E. Degree Examination, Jan./Feb. 2021 **Microcontroller and Embedded Systems**

Time: 3 hrs.

Max. Marks: 100

| 1 11 | ne | 5 IIIS. Max. Marks: 100                                                                         |
|------|----|-------------------------------------------------------------------------------------------------|
|      |    |                                                                                                 |
|      | N  | ote: Answer any FIVE full questions, choosing ONE full question from each module.               |
|      |    | Module-1                                                                                        |
| 1    | a. | Differentiate between RISC and CISC processors. (06 Mark                                        |
|      | b. | Explain ARM core data flow model, with neat diagram. (08 Mark                                   |
|      | c. | Explain ARM registers used under various modes. (06 Mark                                        |
|      | ٠. | 2.Ap. a.m. 7 it cit. 1 registers used didder various modes. (00 iviair                          |
|      |    | OR                                                                                              |
| 2    | a. | Explain the architecture of a typical embedded device based in ARM core, with a ne              |
|      |    | diagram. (08 Mark                                                                               |
|      | b. | Explain the various fields in the current program status register. (06 Mark                     |
|      | c. | Discuss the following with diagram:                                                             |
|      |    | i) Von Neuman architecture with cache.                                                          |
|      |    | ii) Harvard architecture with TCM. (06 Mark                                                     |
|      |    |                                                                                                 |
|      |    | Module-2                                                                                        |
| 3    | a. | Explain the Barrel Shifter Operation in ARM processor, with neat diagram. (06 Mark              |
|      | b. | Discuss the load store instruction with respect to:                                             |
|      |    | i) Single Register Transfer ii) Multiple Register Transfer. (08 Marl                            |
|      | C. | Write the short notes on :                                                                      |
|      |    | i) Register Allocation ii) Allocation variables to register numbers. (06 Mark                   |
|      |    |                                                                                                 |
| 4    |    | OR                                                                                              |
| 4    | a. | Write an ALP using ARM instruction to find the factorial of a given number. (06 Mark            |
|      | b. | Explain Instruction scheduling with respect to ARM Processor. (10 Mark                          |
|      | C. | Show the post condition when MOVs instruction shifts register r1 left by one bit and result     |
|      |    | is stored in r0. Where $r0 = 0 \times 00000000$ , $r1 = 0 \times 80000004$ and CPSR = nzcvqiFt. |
|      |    | (04 Mark                                                                                        |
|      | 16 | Module-3                                                                                        |
| 5    | a. | Differentiate between:                                                                          |
|      |    | i) Microprocessor and Microcontroller.                                                          |
|      |    | ii) Little Endian and Big Endian architecture. (08 Mar)                                         |
|      | b. | With neat block diagram, explain the elements of embedded system. (06 Mar)                      |
|      | c. | Mention the application of embedded system with example of each. (06 Mar)                       |
|      |    |                                                                                                 |
|      |    | OR                                                                                              |
| 6    | a. | Explain the different On board communication interfaces in brief. (08 Mark                      |
|      | b. | Write a note on :                                                                               |
|      |    | '\ D                                                                                            |

ii) Watch dog timer.

(10 Marks)

#### Module-4

a. Explain the Operational and non operational attributes of an embedded systems.
b. Explain the different 'Embedded firmware design' approach in detail.
(10 Marks)
(10 Marks)

#### OR

- 8 a. With a neat block diagram, explain design and working of Washing Machine. (10 Marks)
  b. With FSM model, explain the design and operation of automatic tea/coffee vending machine. (06 Marks)
  - machine. (06 Marks)
    c. Explain Super loop based approach of embedded firmware design. (04 Marks)

### Module-5

- 9 a. Explain the concept of 'deadlock' with a neat diagram. Mention the different conditions which favour a dead lock situation. (10 Marks)
  - b. Write a note on Message passing.

## OR

- a. Explain Multiprocessing, Multitasking and Multi programming.
   b. Define Process. Explain in detail the structure, Memory organization and State transitions of
  - the process. Explain in detail the structure, Memory organization and State transitions of the process. (10 Marks)