

15CS36

Third Semester B.E. Degree Examination, Jan./Feb. 2021 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Define the following terms with an example: i) Conjunction ii) Tautology iii) Quantifiers iv) Proposition v) Conditional or Implication

vi) Dual of statement.

(06 Marks)

b. Prove the validity of the following arguments:

i)
$$p \rightarrow r$$
 ii) $(\neg p \lor \neg q) \rightarrow (r \land s)$ $r \rightarrow t$ $\neg t$ $\therefore \neg r \rightarrow s$ $\vdots \rightarrow r$

(06 Marks)

c. Find the negation of each of the following quantified statements:

i) $\forall x, \forall y [(x > y) \rightarrow ((x - y) > 0)]$

ii)
$$\forall x$$
, $\exists y [(p(x, y) \land q(x, y)) \rightarrow r(x, y)].$

(04 Marks)

OR

2 a. Prove that the following compound propositions are tautologies:

i)
$$[p \land (p \rightarrow q)] \rightarrow q$$
 ii) $\{p \rightarrow (q \rightarrow r)\} \rightarrow \{(p \rightarrow q) \rightarrow (p \rightarrow r)\}.$ (05 Marks)

b. Prove the following by using laws of logic

i) $[(p \rightarrow q) \land (\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$

(05 Marks)

ii) $[p \lor q \lor (\neg p \land \neg q \land r)] \Leftrightarrow (p \lor q \lor r)$. c. Show that "If n is an odd integer then n + 11 is an even integer" by i) Direct proof

ii) An indirect proof iii) Proof by contradiction.

(06 Marks)

Module-2

a. Prove the following by Mathematical Induction:

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}.$$
 (05 Marks)

b. i) How many arrangements are possible for all the letters in the word SOCIOLOGICAL?

ii) In how many of these arrangements A & G are adjacent?

iii) In how many of these arrangements all the vowels are adjacent? (06 Marks)

c. A sequence $\{a_n\}$ is defined recursively by $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. Find a_n in explicit form.

 \mathbf{OR}

4 a. If Fi's are the Fibonacci numbers and Li's are the Lucas numbers, prove that

 $L_{n+4} - L_n = 5 F_{n+2}$ for all integers $n \ge 0$.

(06 Marks)

b. A certain college question paper contains 3 parts A, B and C with 4 questions in part A, 5 questions in part B & 6 questions in part C. It is required to answer 7 questions by selecting at least 2 questions from each part. In how many different ways can a student solve the question paper?

(06 Marks)

- c. Find the coefficient of:
 - i) $x^2 y^2 z^3$ in the expansion of $(x + y + z)^7$.
 - ii) $v^2 w^3 x^2 y^5 z^4$ in the expansion of $(v + w + x + y + z)^{16}$

(04 Marks)

Module-3

- 5 a. Let $A = \{a, b, c, d\}$ and $B = \{2, 4, 5, 7\}$. Determine the following:
 - i) $1 \text{ A} \times \text{B1}$.
 - ii) Number of relations from A to B.
 - iii) Number of relations from A to B that contain (a, 4) and (c, 7).
 - iv) Number of relations from A to B that contain exactly six ordered pairs.
 - v) Number of binary relations on A that contain at least Fourteen ordered pairs. (06 Marks)
 - b. Let f, g, h be functions from z to z, define by $f(x) = x^2$, g(x) = x + 5 and $h(x) = \sqrt{x^2 + 2}$. Determine (h o (g o f)) (x) and ((h o g) o f) (x). Verify that h o (g o f) = (h o g) o f. (05 Marks)
 - c. Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 3), (1, 3), (4, 1), (1, 4), (4, 4)\}$. Is R is an equivalence relation? Find the corresponding partition on A. (05 Marks)

OR

- 6 a. Prove that if $f: A \to B$, $g: B \to C$ are invertible functions, the g o $f: A \to C$ is invertible and $(g \circ f)^{-1} = f^1 \circ g^{-1}$.
 - b. Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 3), (3, 4)\}$, $S = \{(3, 1), (4, 4), (2, 4), (1, 4)\}$ be relations on A. Determine the relations R o S, S o R, R^2 and S^2 . Write down their matrices.
 - c. Consider the Hasse diagram of a POSET (A, R) given in Fig. Q6(c).
 - i) Determine the relation matrix R ii) Construct the digraph for R
 - iii) Write maximal, minimal, greatest and least elements. (06)

(06 Marks)

Module-4

- 7 a. How many integers between 1 and 300 (inclusive) are i) divisible by atleast one of 5, 6, 8?

 (05 Marks)
 - b. Determine in how many ways can the letters in the work ARRANGEMENT be arranged so that there are exactly two pairs of consecutive identical letters. (06 Marks)
 - c. Find the Rook polynomial for 3×3 board by using the expansion formula. (05 Marks)

OR

- 8 a. A person invests Rs 100,000 at 12% interest compounded annually: i) Find the amount at the end of 1st, 2nd, 3rd year ii) Write the general explicit formula iii) How long will it take to double the investment. (06 Marks)
 - b. Solve the recurrence relation $a_{n+2} 8a_{n+1} + 16a_n = 8(5^n) + 6(4^n)$, where $n \ge 0$ and $a_0 = 12$, $a_1 = 5$ (05 Marks)
 - c. An apple, a banana, a mango and an orange are to be distributed to four boys B₁, B₂, B₃ and B₄. The Boys B₁ and B₂ do not wish to have apple, B₃ does not want banana or mango and B₄ refuses orange. In how many ways the distribution can be made so that no boy is displeased?

 (05 Marks)

2 of 3

Module-5

- 9 a. Define the following: i) Complete Graph ii) Bipartite Graph iii) Isolated Vertex iv) Regular Graph v) Subgraph. (05 Marks)
 - b. Let G = (V, E) be simple graph of order |V| = n and size |E| = m. If G is a bipartite graph, prove that $4m \le n^2$. (05 Marks)
 - c. Construct an optimal prefix code for the symbols a, o, p, u, y, z that occur with frequencies 20, 28, 4, 17, 12, 7 respectively. (06 Marks)

OR

10 a. Prove the following:

- i) A path with n vertices is of length n-1.ii) If a cycle has n vertices, it has n edges.
- iii) The degree of every vertex in a cycle is two. (06 Marks)
- b. Define Isomorphism. Verify the two graphs are Isomorphic. (Refer Fig. 10(b(i),(ii))

V, V4 V6

(04 Marks)

Fig. Q10(b (i))

Fig. Q10(b (ii))

- c. List the vertices in the tree given in Fig. Q10(c), when they are visited in:
 - i) Preorder ii) Postorder iii) Inorder Traversal. (06 Marks)

